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초 록

학습하는 동안 관찰하지 못했던 이미지에 일반화 가능한 강화 학습 (RL) 에이전트를 학습하는 것은 심층

강화학습을 실제 세계에 더 많이 적용할 수 있게 해준다. 해당 분야에서는 데이터 증강 (augmentation)

및 보조적인 표현 학습 (representation learning) 기법을 활용하여 이전 문헌에서 상당한 진전을 보였다.

그러나 관찰하지 못했던 이미지에 대해 샘플 효율적이고 일반화 가능한 정책을 학습하려면 종종 엄청난

양의 샘플이 필요로 한다. 이 연구에서는 널리 사용되는 모델 기반 RL 구조와 가치 함수 기반 RL의 선행

문헌에서 연구했던 기술들을 혼합하여 뛰어난 샘플 효율로 관찰 일반화를 장려하는 새로운 모델 기반 RL

방법을 제안한다. 우리의 핵심 아이디어는 이미지에 가해진 방해와 관계없이 일관된 표현을 예측하도록

모델을제한하는것이다. 해당논문은다양한환경과작업에서 RL에이전트의일반화능력에관한광범위한

결과를 제공한다.

핵 심 낱 말 심층강화학습,시각적강화학습,모델기반강화학습,표현학습,강화학습에서의시각적일반화

Abstract

Learning a generalizable reinforcement learning (RL) agent to the unseen visual image enables further

deployments of deep RL into the real world. The field has witnessed significant progress in the prior

literature by leveraging data augmentation and auxiliary representation learning techniques. However,

learning a sample-efficient and generalizable policy to unseen visual inputs often requires tremendous

samples. In this work, we devise a novel model-based RL method for encouraging observational general-

ization with superior sample efficiency by blending a popular model-based RL architecture with advanced

recipes from prior literature in model-free RL. Our key idea is to constrain the model to predict consistent

representation regardless of perturbations. We provide extensive results concerning the generalization

ability of RL agents with diverse environments and tasks.

Keywords Deep reinforcement learning, visual reinforcement learning, model-based reinforcement learn-

ing, representation learning, and visual generalization in reinforcement learning
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Chapter 1. Introduction

Reinforcement learning (RL), a branch of machine learning interconnected with optimal control, trains

an agent to maximize expected return by interacting with the environment. While another branch

in machine learning, i.e. supervised learning, typically requires a dataset of pairs (st, at) to train a

decision-making agent that predicts an optimal action, an RL agent can learn which action should be

executed based on the value function that predicts future expected return without any supervisions [38].

Furthermore, the RL agent can find an optimal decision rule so-called policy without accurate physical

information regarding the environment where the agent interacts. This makes RL remarkable in contrast

to optimal control which necessitates accurate dynamics equations for emitting a precise control solution.

Nevertheless, traditional RL exhibits a few limitations regarding more complex decision-making

problems. For instance, expensive computing budgets for value and policy learning hamper efficient

learning when the state or action space contains high-dimensional information [40], e.g. pixel image state.

Recent breakthroughs tackle these problems by combining RL with the neural network to solve diverse

decision-making problems [18, 34, 41, 42]. Deep RL becomes more prominent in solving challenging

control problems by adopting novel learning techniques [5, 8, 26, 32, 33]. Actually, the agent given

eminent representations related to decision-making can easily train the accurate value function, leading

to superior policy learning. However, one might consider a different but plausible scenario for the agent:

what would happen if the agent is given heterogeneous environments between training and evaluation?

To give an example, the autonomous driving agent would encounter a road scene during evaluation

similar to the training environment other than the luminosity of view. While humans who have acquired

expert driving skills can maneuver well regardless of the background brightness, the agent would face

severe difficulty in making correct decisions since trained neural networks would fail to predict trustful

output when trained on limited data and examined with a similar but unseen view [6].

Alleviating this generalization issue has induced numerous challenges since deep RL often couples

policy learning and representation learning. Previous approaches address learning robust representation

learning [24, 30, 43, 45, 49], applying stronger data augmentations [13, 14, 20, 23], and stabilizing value

function learning [14, 19, 27]. Regarding the data augmentation, enlarging the limited dataset with

weakly augmented, i.e. random shift, visual data contributes to the significant sample-efficient RL with

visual input [23, 46, 47], whereas employing a relatively strong augmentation, e.g. random convolution

or overlay, improves generalization capability of the agent over unseen image inputs during training.

Interestingly, a common ground shared across these approaches is that they fall into the model-free

RL category where the agent mainly relies on the Q value function for policy learning. Since typical

model-based RL exploits samples from the trained model that is responsible for generating extra ex-

periences to learn the policy, the agent of model-based RL may show poor performance if the model

tries to predict future trajectories with unseen input [38]. In contrast, model-free RL usually involves

policy iterations with temporal difference (TD) learning, where the Q value function is trained to min-

imize the TD target and predicts the expected future return of the given state and action. However,

the nature of model-free RL that updates the policy incrementally and contains weak inductive bias [2]

essentially decreases the sample efficiency of the RL agent. Furthermore, the stochasticity of the envi-

ronment or high-dimensional state and action spaces worsen this problem [48]. Alongside model-free RL,

groundbreaking ideas in model-based RL have proven their superior performance and sample efficiency

1



Figure 1.1: Out-of-distributional representation. Distribution shift occurs when sampled states

between training and evaluation distribution differ. straint and sevalt are example states. hθ and dθ are the

encoder and transition dynamics, z and z′ are extracted representations from in-distributional and out-

of-distributional states, respectively. a is an action and Z is the distribution of z where representations

are projected from only the training distribution. Subscript t represents a time step of the environment

transition.

in diverse and challenging continuous control suites in recent years [9, 10, 12, 15, 16]. By learning a

latent transition dynamics model with additional components regarding the model, current model-based

RL has validated scalability to higher dimensions and brilliant performance on more complex domains.

Thus, one might throw a question in this context, ”Can we derive a model-based RL method that enjoys

both sample efficiency and better generalization over unseen input by adopting recipes from model-free

RL?”

A model-based RL agent with visual input first obtains corresponding representations using a feature

extractor, i.e. the encoder, and afterward, rolls out the (latent) transition dynamics model with given

representations. Therefore, the encoder that may predict inaccurate representations given unseen image

input could be attributed to the collapse of the model-based RL agent in the observational generalization

problem since the transition dynamics model would be conditioned on out-of-distributional representa-

tions in Figure 1.1. However, we contend that model-based RL can generalize to unseen image input

with surpassing sample efficiency based on the idea of projecting out-of-distribution image samples to

in-distribution representations and generating future representations consistent with the in-distribution

samples for downstream model learning and planning.

In this paper, we propose Model-Based RL with Observational Generalization (MBOG), a model-

based RL that empirically demonstrates strong generalization ability over unseen image input without

sacrificing sample efficiency by employing recipes from model-free RL. MBOG consists of three key factors

for improving performance: (1) applying weak and strong data augmentations to given image input for

sample efficiency and generalization, (2) predicting a consistent latent representation simulated by the

latent transition dynamics, and (3) regularizing the encoder to extract consistent representations over

differently augmented input. We perform extensive experiments to verify our design choice contributes

to superior performance on the generalization benchmark [50] across DM-Control [39] and Robosuite [52]

benchmarks. Through a comprehensive ablation study, we prove that the proposed design becomes the

best fit for solving observational generalization with model-based RL.

2



Chapter 2. Related Works

2.1 Observational Generalization in Deep RL

Learning a policy that outputs an action maximizing the expected cumulative return under different

observation spaces between training and evaluation produces a unique challenge. Observational general-

ization refers to how the agent trained with visual input maximizes the return during evaluation where

the input images from training and evaluation environments are visually different. Prior approaches

often incorporate model-free value-based algorithms with representation learning [1, 24, 30, 43, 45, 49],

data augmentation [13, 14, 20, 23, 25], and stabilization of value learning [14, 19, 27]. Since jointly

learning low-dimensional compact representation from a high-dimensional raw image while capturing

optimal behavior from reward signal in an end-to-end manner usually necessitates a large quantity of

dataset [31, 36], learning an encoder that can extract helpful information for RL training from data plays

a critical role in observational generalization. In this work, we focus on the observational generalization

problem in RL similar to prior works. However, we also address the sample efficiency problem during RL

training in addition to generalization performance, where prior works have been overlooked. We contend

that considering the sample efficiency problem is as significant as the generalization performance since

we are given only a limited set of training images according to problem formulation, which exacerbates

when a pool of evaluation images increases.

2.2 Model-based Reinforcement Learning

Expanding previous value-based RL methods with the deep neural network has enabled successful adop-

tions of conventional RL to challenging domains, including a high-dimensional state or continuous action

space. However, a prerequisite of a huge bucket of experience replay to learn a well-performing policy

becomes a primary bottleneck for RL practitioners [48]. Model-based RL has been introduced as an

alternative approach that trains a proxy of the transition model of the environment and exploits the

learned model to generate synthetic data for further policy learning [4, 37], allowing the agent to simu-

late future states and plan the best action to maximize expected return. Since the proxy model is trained

via limited collections of the transition, using the ensembles of the trained model [3, 21, 22] alleviates

the uncertainty arising from the imperfect model. Learning a world model that simulates future states

usually from high-dimensional observations with a latent sequential transition model [7] demonstrates

superior sample efficiency and downstream RL performance. Formally, learning a recurrent transition

model while reconstructing future images with encoder-decoder structure [9, 10, 12] or combining the

planning with model predictive controller without reconstructions [15, 16] proves successful adoption to

continuous control of more complicated domains. In this work, we choose TD-MPC [15] as a backbone

model-based RL method for observational generalization problems since recent results have shown supe-

rior sample efficiency of TD-MPC compared to another state-of-the-art architecture, Dreamer [16]. We

provide further discussions concerning model-based RL in Appendix 7.2.

3



Chapter 3. Preliminaries

3.1 Problem Formulation

We design the problem an RL agent tries to solve as the Markov Decision Problem (MDP). MDP is defined

as a tuple ⟨S,A, T , r, γ⟩, where S is the state space, A is the action space, T : S×A 7→ S is the transition

dynamics probability, and r : S×A 7→ R is the reward function. The agent receives not the state directly

but the high-dimensional image from the observation space O. Likewise in [14, 47], we define the state st

as a stack of consequent images for simplicity, i.e. st = {ot, ot−1, ot2 , . . . , ot−k+1} where st ∈ S, ot ∈ O,
t and k is the time-step and the number of image stacks, respectively. The goal of the agent is to find

an optimal policy π∗ that maximizes the cumulative expected return Eat∼π(·|st)
∑∞

t=0 γ
tr(st, at) with the

discount factor γ ∈ [0, 1).

3.2 Observational Generalization

Following [14, 49, 50], we define the observational generalization problem as a particular problem set

where an agent is trained with an MDPM and evaluated with a set of MDPs M = {M̄1,M̄2, . . . ,M̄n}.
MDPs in the set share the same tuple with M other than the perturbed state space S̄ where the

state of the perturbed state space s̄ ∈ S̄ is a concatenation of sampled images from the perturbed

observation space Ō. The perturbed observation contains partial but essential information about the

original observation (e.g., a locomotion agent’s body image). During training, an agent receives the state

(a stack of images) only from M = ⟨S,A, T , r, γ⟩ to learn an optimal policy. In contrast, the agent is

evaluated with an MDP sampled fromM and given the perturbed state (a stack of perturbed images, s̄t =

{ōt, ōt−1, ōt2 , . . . , ōt−k+1}) to maximize the expected return, i.e., ōt ∈ Ōi,M̄i = ⟨S̄i,A, T , r, γ⟩,M̄i ∼M.

Perturbed images are first sampled from O and perturbed with a transformation ν ∼ N ; ν : O×N 7→ O
that is also sampled from the set of perturbations (e.g., background color change). The goal of an agent

is to maximize the expected return during evaluation without any access to the evaluation images during

training.

3.3 Temporal Difference learning for MPC

Our method is built upon TD-MPC [15], a model-based RL architecture that combines temporal differ-

ence learning [38] for terminal Q value function with the model predictive control (MPC) for planning.

TD-MPC is a latent space decoder-free world model that jointly learns parameters of the model: (i) a

representation z = hθ(s) by encoding a stack of high-dimensional inputs s into a low-dimensional repre-

sentation z with an encoder hθ, (ii) a latent dynamics model z′ = dθ(z, a) that predicts the next latent

state z′ given current latent state z and action a, (iii) a reward function r̂ = Rθ(z, a) that predicts the

one-step reward, (iv) a Q value function q̂ = Qθ(z, a) that predicts the state-action value function, and

(v) a prior policy â ∼ πθ(z) that is trained to maximize the Q value function Qθ and used as a guiding

policy for planning. z′ and s′ are the successor (latent) state while z and s are predecessor (latent) state,

respectively.

4



During online training, the world model is trained via minimizing a weighted loss over the prediction

horizon given the experience replay B:

LTD-MPC(θ;Lrew,LQ,Ldyn,B) = EΓ∼B

[
t+H∑
i=t

λi−tLTD-MPC(θ;Lrew,LQ,Ldyn,Γ)

]

= EΓ∼B

[
t+H∑
i=t

λi−t

(
c1Lrew(θ; zi, ai, ri) + c2LQ(θ; zi, ai, ri, z̃i+1) + c3Ldyn(θ; zi, ai, z

targ
i+1 )

)]
, (3.1)

with each prediction loss:

Lrew(θ; zt, at, rt) = ∥Rθ(zt, at)− rt∥22, (3.2)

LQ(θ; zt, at, rt, z̃t+1) =

∥∥∥∥Qθ(zt, at)− sg
(
rt + γQθ−

(
z̃t+1, πθ(z̃t+1)

))∥∥∥∥2
2

, (3.3)

Ldyn(θ; zt, at, z̃
targ
t+1 ) = ∥dθ(zt, at)− sg

(
z̃targt+1

)
∥22, (3.4)

where a horizontal trajectory segment Γ = (st, at, rt, st+1)t:t+H with a horizon H is sampled from the

replay buffer B and λ ∈ R+ is a constant decaying over the horizon to weight closer predictions higher.

Lrew,LQ,Ldyn are the reward, Q value, and latent transition dynamics prediction loss, respectively,

and ci ∈ R+, i = 1, 2, 3 are the coefficients balancing each loss. θ− stands for exponentially moving

average target parameters of online parameter θ, sg is the stop-grad operator that prevents the computed

gradient from influencing the remaining gradient computations. z̃targt+1 = hθ−(st+1) and z̃t+1 = hθ(st+1)

are directly extracted representation from the target and online encoder, respectively. At each time of

the model learning, zt is encoded from the state st first and recursively fed into the latent transition

dynamics model dθ to compute the loss; zt = hθ(st), zk = dθ(zk, ak)∀k ∈ [t+ 1, t+H]. The prior policy

πθ is trained to maximize the Q value function over horizons only with respect to the policy parameters:

Lπ(θ) = EΓ∼B

[
t+H∑
i=t

λi−tQθ

(
sg(zi), πθ

(
sg(zi)

))]
,

where the objective is commonly used in model-free actor-critic methods.

During inference (planning), a trained world model is used for the model predictive controller,

specifically model predictive path integral (MPPI, [44]). The solution of MPPI can be found by iteratively

fitting a time-dependent multivariate Gaussian with diagonal covariance over the action space. The

objective of iterative fitting is to maximize the expected return:

R̂ =

t+H∑
i=t

γi−tRθ(zi, ai) + γHQθ(zH , aH),

where zt+1 = dθ(zt, at) and action at is sampled from the multivariate normal distribution with the mean

uj
t and diagonal standard deviation σj

t at the sampling iteration j and time-step t. The parameters are

initialized with zero means and unit standard variance in the action space. Since the reward function is

trained to predict the ’instantaneous’ reward, i.e., r̂ = Rθ(zt, at), the Q value function allows the agent

to fit the optimal action sequence based on ’farsighted’ return. Following the procedure, an optimal

action maximizing the expected return can be obtained via planning; at ∼ Π(·|hθ(st)). We refer to [15]

for the additional details.

5



Chapter 4. Method

In this section, we present MBOG, a model-based RL method that empirically demonstrates strong

generalization ability over unseen image input without sacrificing sample efficiency by employing verified

recipes from the model-free RL realm. MBOG is built upon TD-MPC has proven strong sample effi-

ciency over continuous control tasks and applies advanced techniques for observational generalization:

(1) weak and strong data augmentations to given image input for sample efficiency and generalization,

(2) consistent latent representation simulated by the latent transition dynamics and (3) regularization

that allows the encoder extract consistent representations over differently augmented input. Our method

is compatible with any model-based RL method that learns the latent transition dynamics with a visual

feature extractor (the encoder) since we do not constrain any change of the underlying algorithm in prin-

ciple. In the following, we explain how MBOG tackles the problem by leveraging the core components

under the hood.

4.1 Architectural Overview

An overview of MBOG can be found in Figure 4.1. We build our method on top of TD-MPC, a sample-

efficient model-based architecture, by fusing the world model learning with data augmentations and

representation learning. We employ weak and strong augmentations for latent world model learning by

applying weak and strong augmentations to the original image, subsequently. Representations encoded

from heterogeneous images are mixed into the latent representation for world model learning (e.g., reward

and transition model). Since the world model is trained over the prediction horizon, we regularize

the latent dynamics and encoder over the horizon to have consistent representations regardless of an

augmentation. We do not enforce constraints or changes in the model planning procedure.

4.2 Weak and Strong Augmentation

We refer to weak augmentation as employing a relatively minor change in an image (e.g., random shift

transformation) and strong augmentation as applying a significant change in the image (e.g., random

color convolution). While prior works have shown these augmentations boost the generalization perfor-

mance and sample efficiency [14, 25, 46], the empirical results are limited to the value-based model-free

learning approach. Hence, we propose a novel method for adapting data augmentations into model-

based RL. Following prior works, we adopt random-shift [46] as weak and random-overlay [13] as strong

augmentation in this work: random-shift augmentation applies a fixed amount of padding to a random

direction in top, bottom, right, and left of the image and random-overlay augmentation linearly inter-

polates between a random image and an original image where the random image is sampled from an

unrelated data to the task [51]. Likewise in previous works [13, 14, 49], while one can feed both weakly

and strongly augmented images to the encoder in principle, we empirically find that dividing the batch

randomly in half and augmenting two sub-batches with different augmentations can produce a similar

performance with decreased computing budget. Consider a set of indices I = {1, 2, . . . , B} where B is

the size of the batch. Let the indices of the batch be weakly and strongly augmented as Iw and Is,
respectively. Then, the representations from weakly and strongly augmented images at time-step t, i.e.,
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Figure 4.1: MBOG architecture. (Left) Weak and strong augmentations are used for observational

generalization. (Center) A bias toward weakly augmented representation ensures latent representation

consistency. (Right) The encoder is regularized to extract consistent representation regardless of aug-

mentations.

zwt and zst , become:

zwt = hθ(τ
w(swt , υ

w)), swt = {st,i : i ∈ Iw},

zst = hθ(τ
s(sst , υ

s)), sst = {swt,j : j ∈ Is},

where zt = zwt ⊕ zst is the total representation at time-step t where ⊕ is element-wise concatenation,

τ : S ×Υ 7→ S is a random augmentation function with a parameter υ ∼ Υ [13], and st,n corresponds to

the state that is collected by choosing elements in st of an index n along the batch dimension. Superscripts

w and s state weak and strong augmentation, respectively. Iw and Is are subsets of I where subsets are

complementary and disjoint subsets, i.e., Iw ∼ Uniform(1, B), Is = I/Iw, |Iw|/|Is| = ζ ∈ R. Through

all experiments, we set the weak and strong augmentation ratio as ζ = 1.0: divide the original batch

in half for weak and strong augmentation. Although the representation zt is recursively used for world

model learning over the horizon, we apply these augmentations only at time-step t.

4.3 Latent Consistency

While strong data augmentation enables better generalization with unseen visual input, employing strong

data augmentation to downstream latent model learning can become problematic. As observed in many

prior works [14, 17, 29], noisy and high-variance target values might impede the fast convergence of

the Q value function. Since the Q value network is conditioned on the representation in TD-MPC and

the representation is encoded from the observation images directly over the horizon, the representation

encoded from the strongly augmented image may produce a trivial signal for downstream model learning.

However, the field has observed that weak data augmentation often encourages sample-efficient RL in

high-dimensional observation space configuration [15, 46, 47]. To enable sample-efficient model learning
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without sacrificing generalization performance, we constrain the latent representation to have consistency

toward weakly augmented representation zwt . After the representation zt is encoded with weak and

strong augmentation, the latent transition dynamics model predicts the successor latent representation

zt+1 given predecessor zt and action at in the equation 3.1. The parameters of the latent transition

dynamics model are updated by solving a regression problem: L(θ; dθ) = MSE(dθ(zt, at), zt+1) where

zt+1 = sg(hθ−(st+1)). We implement the weak augmentation, i.e., random-shift, to the target images to

generate consistent target representation:

Lcon(θ; zt, at, z̃
w,targ
t+1 ) = ∥dθ(zt, at)− sg(z̃w,targ

t+1 )∥22,

where z̃w,targ
t+1 = hθ−(swt+1) is the representation extracted from a weakly augmented state swt through

the target encoder hθ− .

4.4 Regularization over Augmentation

Following the previous steps, the latent transition model and other components of the world model are

trained to predict consistent outputs regardless of whether the state in the batch is weakly augmented or

strongly augmented. However, the encoder might predict inconsistent representation between training

and evaluation images. Although the latent transition model is trained to predict consistent represen-

tations over the horizon, the encoder has no constraint to predict a similar representation whether the

training or evaluation image is given. Hence, the model should generate reliable synthetic samples re-

gardless of the training or evaluation phase to enable sample-efficient and generalizable model-based

RL. To this end, we bring the auxiliary representation learning task to encoder learning during world

model training. By regulating the encoder to preserve similar features (e.g., the physical body of the

agent) and discarding irrelevant information (e.g., background and luminosity) between the original im-

age and the augmented image, we can obtain consistent representation in both training and evaluation

settings. Following [13], we implement the weak and strong augmentation to the state st to generate two

different views of the original image. Subsequently, we train the encoder hθ to extract applied strong

augmentation in the weakly augmented image by minimizing regularization loss:

Lreg(θ; z
w,targ
t , zst ) =

∥∥∥∥∥ zst
∥zst ∥2

− zw,targ
t

∥zw,targ
t ∥2

∥∥∥∥∥
2

2

,

where zst = hθ(s
s
t ) is the representation extracted from a strong-augmented state with the online encoder

while zw,targ
t = sg(hθ−(swt )) is the representation extracted from a weak-augmented state with the target

encoder and stop-grad operator.

Aggregated learning objectives. We incorporate three key components to the world model learning

procedure of TD-MPC over the horizon in Equation 3.1 as follows:

LMBOG(θ;B,Υw,Υs) = EΓ∼B

[
Eυw∼Υw,υs∼Υs

[
t+H∑
i=t

LMBOG(θ; Γ, υ
w, υs)

]]

= EΓ∼B

[
Eυw∼Υw,υs∼Υs

[
t+H∑
i=t

λi−tLTD-MPC(θ;Lrew,LQ,Lcon,Γ) + αLreg(θ; z
w,targ
i , zsi )

]]
, (4.1)

where B is the experience replay and α is a coefficient that balances the gradients of world model

learning and regularization. Υw and Υs are the distribution of weak and strong random augmentation

parameters. In principle, our method can be injected into any model-based RL method that trains the
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latent transition dynamics model. We summarize our method in Algorithm 1. We exclude the learning

process of the prior policy πθ in Algorithm 1 since we employ the same procedure of TDMPC. We provide

additional details regarding implementing MBOG and hyperparameters in Appendix 7.1.

Algorithm 1 MBOG: Model-based RL with Observational Generalization

τw(·|υw ∼ Υw), τs(·|υs ∼ Υs): weak and strong augmentation functions

η, δ, α: learning and target network update rate, and regularization coefficient

θ, θ−: randomly initialized network parameters

1: while not converged do

2: // Collect experiences via planning:

3: for time-step t = 1, 2, . . . , T do

4: at ∼ Π(·|hθ(st)) ▷ Sample an action by planning with the model

5: st+1 ∼ T (·|st, at)
6: B ← B ∪ (st, at, r(st, at), st+1) ▷ Update the replay buffer

7: // Learn the world model:

8: for gradient-step tg = 1, 2, . . . , Tg per episode do

9: (st, at, rt, st+1)t:t+H ∼ B ▷ Sample horizontal transitions

10: L← 0 ▷ Initialize cumulative loss

11: for i = t, t+ 1, . . . , t+H do

12: υw ∼ Υw, υs ∼ Υs ▷ Sample augmentation parameters

13: L← L+ LMBOG(θ; Γ, υ
w, υs) ▷ Equation 4.1

14: θ ← θ + η 1
H∇θL ▷ Update the online parameters

15: θ− ← (1− δ)θ− + δθ ▷ Update the target parameters

9



Chapter 5. Experiments

In this section, we provide empirical results of MBOG on diverse benchmarks with sophisticated exper-

iment designs. We evaluate the generalization performance and sample efficiency with other baselines

in relevant fields. We address the following questions via experiments: (i) how MBOG compares with

other competitive baselines in observational generalization and sample efficiency, (ii) how our design

choice affects the performance of MBOG, and (iii) how predicting consistent representation over the

horizon impacts on observational generalization. We present our implementation details concerning the

generalization benchmark and analyze the performance in the following.

5.1 Experimental Setup

In this section, we explain experimental configurations concerning the environments and baselines for

performance comparison.

Environment. We evaluate MBOG over 6 tasks in the DeepMind control suite (DMC, [39]) and 2 tasks

in robosuite [52]: cartpole swingup, finger spin, walker walk, walker stand, cheetah run, and reacher easy

in DMC; Door and Lift in robosuite. We illustrate the tasks and environments in Figure 5.1. We train

agents for each task with 1M gradient steps and evaluate the trained agents for 5 seeds. See further

details regarding the environment and task setup in Appendix 7.1.

Baselines. We select state-of-the-art baselines in observational generalization problems to compare

MBOG. Specifically, in model-free RL, SVEA [14] stabilizes off-policy Q-learning with data augmen-

tation, SGQN [1] adapts self-supervised learning with attribution map and regularizes Q value learn-

ing, SRM [20] applies a spectrum augmentation to increase robustness toward spatial corruption, and

PIEG [49] plugs large CNN pretrained with ImageNet for consistent representation. To compare the

performance of MBOG with backbone model-based RL, we also evaluate the performance of TD-MPC.

Regarding implementation details of baselines, see Appendix 7.1.

(a) DeepMind Control suite tasks. (b) Robosuite tasks and evaluation types.

Figure 5.1: Environments and tasks. We consider locomotion and manipulation tasks for observa-

tional generalization. We address a set of diverse generalization tasks per environment.
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5.2 Results

In this section, we provide rigorous explanations about each experiment we have designed in Section 5.

We describe the background of each experimental setup and analyze empirical results.

5.2.1 Observational Generalization and Sample Efficiency

We provide aggregated results of performance comparison in Figure 5.2 and Table 5.1. MBOG proves

superior sample efficiency over model-free RL in most cases and preserves similar sample efficiency

compared to the backbone model-based RL, TD-MPC. In addition, MBOG demonstrates remarkable

generalization performance in experiments although it fails to outperform all other baselines. It is worth

noting that MBOG outperforms its backbone model, TD-MPC, in generalization performance with a

trivial sacrifice of sample efficiency. Considering MBOG does not enforce any algorithmic modifications

in model learning and planning with the model, the significant margin of generalization performance

supports the validity of the proposed method to alleviate the out-of-distribution shift problem in obser-

vational generalization. See full experimental results in Appendix 7.3.

Table 5.1: Quantitative comparison of generalization performance. We quantitatively compare

the performance of each algorithm here. Episode return and success rate are reported over tasks in DMC

and robosuite, respectively. We average the results over 5 seeds.

Environment Task SVEA SGQN SRM PIEG TD-MPC MBOG (ours)

DMC

cartpole swingup 819.67 ±163 635.06±123.50 816.51±182.86 655.53±197.25 678.66±300.24 766.99±206.51

finger spin 814.97±305 760.97±307.79 814.93±316.14 780.77±214.09 617.33±356.70 721.62±305.08

walker walk 767.19±156 471.38±112.66 886.38±155.28 880.76±165.36 578.05±367.33 814.50±203.11

walker stand 947.18±102 876.18±163.26 142.16±29.37 937.51±102.51 667.06±321.88 883.47±143.34

cheetah run 435.99±176 226.14±90.50 502.99±155.63 249.32±112.64 379.52±252.26 238.15±95.86

reacher easy 801.57±349 217.68±343.67 834.44±321.28 586.87±453.16 461.69±457.92 744.19±367.91

764.43±275.44 531.24±329.88 666.23±343.59 681.79±329.60 563.72±365.09 694.82±318.48

robosuite
Door 0.0±0.0 0.0±0.0 0.01±0.07 0.92±0.28 0.02±0.14 0.38±0.49

Lift 0.25±0.43 0.0±0.0 0.27±0.44 0.23±0.42 0.03±0.16 0.18±0.39
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(a) Evaluation results. Episode returns are averaged over 14 evaluation tasks.

(b) Sample efficiency results. Episode return and cumulative success rate of evaluations during training are

reported in DMC and robosuite, respectively. Evaluation during training is averaged over 10 episodes.

Figure 5.2: Experimental results. We compare the generalization performance and sample efficiency

of baselines in diverse experiments. MBOG demonstrates strong sample efficiency compared to previous

model-free RL methods and improved generalization ability. TD-MPC also exhibits strong sample effi-

ciency but fails to generalize to unseen images.

5.2.2 Ablation of Design Choices

We investigate several possible design choices for improving the generalization performance of model-

based RL. Toward this objective, we examine the performance of variants of MBOG: dynamic and

consistent augmentation, different strong augmentation, and another auxiliary task for representation

learning. In the following, we explain the past candidates of MBOG and provide a summarized result in

Figure 5.3.

Dynamic and consistent augmentations. We contend that using both weak and strong augmenta-

tion contributes to the increased generalization performance of MBOG. Since typical model-based RL
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predicts future transition samples over the horizon, we suggest a novel model learning scheme with those

augmentations. However, it might be unclear whether applying dynamic augmentation over the hori-

zon benefits the generalization performance. Considering the horizontal state st:t+H with the horizon

H during model learning, MBOG augments the states with both weak and strong augmentation over

the horizon to constrain latent consistency (Section 4.3) and regularization (Section 4.4). The horizontal

states from time-step t to t+H are augmented as:

swt:t+H = {τwk (sk, υ
w
k ) : υ

w
k ∼ Υw, k ∈ {t, t+ 1, . . . , t+H}}

sst:t+H = {τsk(swk , υs
k) : υ

s
k ∼ Υs, k ∈ {t, t+ 1, . . . , t+H}},

where the random augmentation function τ can depend on time-step or not. We refer to τt as consistent

augmentation over the horizon if τt = τt+k∀k ∈ [0, H] is satisfied. If the augmentation function differs

over the horizon, i.e., τt ̸= τt+k,∀k ∈ [0, H], we denote it as a dynamic augmentation function. MBOG

adopts the dynamic augmentation for both weak and strong augmentations, i.e., τt ̸= τt+k,∀k ∈ [0, H].

We denote MBOG with consistent augmentation as MBOG CONST AUG later in experiments.

Different strong augmentation. Motivated by prior results [13, 14, 49], we choose random-overlay as

strong augmentation for observational generalization in model-based RL. However, as proposed in [14, 23,

25], other strong augmentation methods can become strong candidates for observational generalization in

Deep RL. Among potential augmentations, we opt random-conv as another strong augmentation method,

which has exhibited remarkable performance in previous works. Precisely, we refer random-overlay and

random-conv augmentation as:

τs,overlay(o, õ) = (1− δ)o+ δõ

τs,conv(o, w) = CONV(o, w)

where o ∈ OB×C×H×W is the original images with the batch size B, channel C, height H, and width W ,

respectively. δ is a linear interpolation coefficient, õ ∼ D is an overlaying image sampled from a dataset

unrelated to the task. We set the default value of δ as 0.5. CONV stands for 2-dimensional convolution

operation over the batch dimension and w ∈ RN×Ck×Hk×Wk : w ∼ N (0, 1) is the convolution filter ran-

domly initialized from the normal distribution and kernel number N , channel Ck, height Hk, and width

Wk, respectively. We implement the same strong augmentation over the channel dimension to obtain

the state st = {ot, ot−1, · · · , ot−k+1}. While MBOG chooses random-overlay as strong augmentation, we

denote MBOG CONV as MBOG replaced with random-conv.

Another auxiliary representation learning task. Learning proper representation for vision-based

RL plays a critical role in sample efficiency and generalization performance. Prior literature [1, 17, 24, 30,

49] has explored the field by leveraging popular representation learning techniques in computer vision. As

in Section 4.4, we intend the encoder to predict robust representation regardless of distracting components

(e.g., background image). Hence, we consider two variants of auxiliary representation learning task:

SODA [13] and CURL [24] where we use the same auxiliary task from SODA for representation learning

in Section 4.4:

LCURL(θ; q, k) =

(
log

exp qTWk+

exp qTWk+ +
∑B

j=0 exp q
TWkj

)
,

where q = hθ(τ
w(st, υ

q)) is the anchor, k = hθ−(τw(st, υ
k)) is the key, and W is the weight kernel for

bilinear product. υq and υk are separately sampled parameters for generating anchor and key images

from the same distribution Υw. We denote MBOG CURL as MBOG replacing the regularization loss (i.e.,

Lreg = LSODA) with LCURL.
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Aggreagated results. We provide the aggregated experimental results in Figure 5.3. We compare

MBOG with MBOG CONST AUG, MBOG CONV, and MBOG CURL in finger spin and walker walk tasks. MBOG

proves superior sample efficiency and generalization performance compared to other options, validating

that the proposed method is the most reasonable choice among available options. See further experi-

mental details regarding this comparison in Appendix 7.3.

Figure 5.3: Experiments comparing design choices. We have considered several methodologies

for building generalizable model-based RL. Among the potential choices, MBOG proves its superiority

in experiments.

5.2.3 Visualized Consistent Representation

To reduce the prediction error of the world model for observational generalization, we propose a novel

approach that constrains the world model learning with data augmentation and regularization. Through

the approach, the world model becomes generalizable to unseen observations for evaluation and avoids

forgoing the superior sample efficiency of model-based RL. The idea below the method is that it is

important not only to constrain a consistency to the latent transition model that recursively predicts

the latent transitions but also to regularize the encoder to predict robust representation regardless

of distracting factors. Hence, we conduct experiments to validate the motivation that MBOG would

demonstrate consistent prediction ability regardless of perturbations while TD-MPC fails. We set the

conditions for consistent representation: (1) the latent representations predicted by the transition model

should be aligned with the future latent representations from the encoder and (2) the encoder should

predict consistent representations between the original and unseen images. We collect the horizontal

replay transitions by rolling out the trained model and feed the same input (i.g., (st, at, st+1)t:t+H) to

MBOG and TD-MPC to predict the latent representations. Since the representation often has more

than two dimensions, we visualize the collected representations from the latent transition model dθ

and encoder hθ with UMAP [28] in Figure 7.10, a popular manifold learning method to extract two-

dimensional coordinates from high-dimensional representations.
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Figure 5.4: Visualization of embeddings. We visualize the embedding vectors using UMAP. (Top)

MBOG shows consistent representation over the horizon and types of evaluation. (Bottom) Illustra-

tion of types used for extracting representation over different types of generalization (original, back-

ground color easy, and background color hard from left-side).

While TD-MPC struggles to output consistent representation over the horizon in evaluation tasks

(i.e., background color), MBOG demonstrates unvarying and aligned representation between the la-

tent dynamics prediction z∗t+1 = dθ(zt, at) and the encoder prediction z×t+1 = hθ(st+1). Furthermore,

MBOG manifests similar prediction ability regardless of generalization types (i.e., between original, back-

ground color easy, and background color hard) while TD-MPC predicts far-away representation from the

original (trained) distribution, demolishing the accuracy of latent transition dynamics model. See addi-

tional discussions in Appendix 7.3.

5.3 Discussion and Future Work

MBOG achieves superior generalization ability to unseen image inputs with similar sample efficiency

to TDMPC. By constraining the world model learning with data augmentation and regularization by

representation learning, MBOG can achieve a remarkable generalization performance without losing the

superior sample efficiency of model-based RL. However, there are a few setbacks for model-based RL

to overcome in observational generalization. First, the performance gain of MBOG is still below the

state-of-the-art model-free RL in observational generalization. While it is notable that MBOG improves

the generalization ability over TD-MPC, previous works (e.g., SVEA [14]) achieve better generalization
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performance than MBOG in experiments. One possible direction for future work is to adapt the learned

world model during evaluation by few-shot learning (e.g. [45]). Second, the computing cost of planning

is prohibitively high. Since the model is used not only for gathering samples during training but also for

planning an optimal action during evaluation, reducing the computing cost raised by the model rollout

should be the next step to adopting model-based RL into observational generalization in RL. Third,

the empirical results are limited to a narrow distribution of tasks. We conduct extensive experiments

in DMC and robosuite. While baselines manifest impressive generalization performance in DMC, all

methods including MBOG and the state-of-the-art model-free method fail to achieve meaningful results

for most tasks in robosuite. We suggest that incorporating further investigations on manipulation agents

with visual input into observational generalization would be thrilling future work. We hope that future

work will resolve the remaining problems and push the boundaries of model-based RL in observational

generalization.
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Chapter 6. Conclusion

We propose MBOG, a model-based RL that empirically demonstrates strong generalization ability over

unseen image input without sacrificing sample efficiency by employing recipes from model-free RL in

observational generalization. By constraining the world model to predict consistent representation with

data augmentation and representation learning, MBOG successfully solves the observational generaliza-

tion problem. We contemplate potential design choices and verify the chosen option outperforms other

baselines. We provide extensive results for comparing the performance between model-free and model-

based RL. However, there remains room for further improvements in model-based RL with observational

generalization. We believe that further transitions from the model-based RL field into the observation

generalization realm enable exciting collaborations.
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Chapter 7. Appendix

7.1 Implementation Details

In this section, we describe the implementation details concerning the environments and baselines. We

bring overall source code from RL-ViGen [50]1. We thank the authors of RL-ViGen for providing

comprehensive source code.

Environment. We consider 14 evaluation types in DMC and 3 evaluation types in robosuite. In DMC,

we account for the type and difficulty of the tasks for observational generalization performance evaluation.

By following [13, 50], we propose a unique set of observational generalization categories:

• background color : Change the background color of the agent (e.g., terrain grid or background sky

color).

– Uniformly sample the parameters of the color, i.e., (r,g,b), from the easy and hard distribution

in Figure 7.1 for difficulties.

• cam pos: Change the position of the tracking camera’s focus by randomly adding noise offset.

– Let the initial position of the tracking camera’s focus be Xcam = (xi, yi, zi) in Euclid space.

– Sample a random offset δ from the uniform distribution with different bounds: U(−0.08, 0.08)
for easy and U(−0.15, 0.15) for hard difficulty.

– Inject the offset to the initial position of the camera; Xcam = (xi + δ, yi + δ, zi + δ).

• background video: Overlay the background with the randomly sampled natural video.

– Sample a random video with the same width and height as the original image from a set of

natural videos [35].

– Overlay the video only to the background sky for easy and to all backgrounds including the

ground terrain other than the agent for hard difficulty.

• light position: Change the position and orientation of the tracking light of the agent.

– Following the approach used in [35], the tracking light’s coordinate is parameterized as the

spherical coordinate; (ϕ, θ, r) where ϕ is azimuth, θ is inclination, and r is the radius of the

sphere.

– Sample ϕ from the normal distribution N (π/6, 1) for easy and N (π/3, 1) for hard difficulty.

– Sample θ ∼ N (2π, 1) and transform the initial pose of the tracking light Xlight to (ϕ, θ, r)

where r =
√

Xlight.

• light color : Change the color of the tracking light of the agent.

– Uniformly sample the parameters of the color, i.e., (r,g,b), from the easy and hard distribution

in Figure 7.1 for difficulties.

1https://github.com/gemcollector/RL-ViGen
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• moving light : Rotate the tracking light of the agent around the agent.

– Likewise in light position, the spherical coordinate of the tracking light is randomly initialized

as (ϕ, θ, r).

– Let the speed of azimuth rotation as ∆ϕ = π/200 for easy and ∆ϕ = π/100 for hard difficulty.

– Rotate the tracking light counterclockwise at azimuth axis; (ϕ, θ, r)← (ϕ, θ, r) + (∆ϕ, 0, 0).

• object color : Change the color of the body color of the agent.

– Uniformly sample the parameters of the color, i.e., (r,g,b), from the easy and hard distribution

in Figure 7.1 for difficulties.

where easy and hard difficulties exist for 7 types of evaluation. In robosuite, we consider 3 types of

evaluation with the franka panda manipulator: eval-easy, eval-hard, and eval-extreme, which is predefined

by [50]. We illustrate example images of DMC in Figure 7.2 and robosuite in Figure 7.3.

Figure 7.1: Predefined distribution for evaluation. We uniformly sample the color parameters

from predefined space for easy and hard difficulties in DMC. Unnormalize the scaled color values for

each color RGB space.
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Figure 7.2: Evaluation set in DMC. We consider 7 types and 2 difficulties for generalization

evaluation in DMC. We provide motivating example images in walker walk task.

Figure 7.3: Evaluation set in robosuite. We consider 3 types of generalization evaluation in

robosuite. We provide motivating example images in Door task: each row stands for train, eval-easy,

eval-hard, and eval-extreme; each column corresponds to a different scene in the same type.

Baselines. We consider 4 competitive baselines for model-free (SVEA [14], SGQN [1], SRM [20], and

PIEG [49]) and TD-MPC( [15]) for model-based algorithms for comparison. We bring the source code

of the model-free baselines from the RL-ViGen benchmark since the implementation is straightforward.
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We implement MBOG upon the official repository of TD-MPC [15]2. We intend to maximize the same

hyperparameters and task-specific parameters (e.g., action repeat) across experiments. We list common

parameters used across tasks in Table 7.1 and algorithm-specific hyperparameters in Table 7.2 and 7.3.

We remark that we pursue unified task-specific parameters for reproducible results and concise compar-

ison of baselines.

Table 7.1: Common hyperparameters. We list commonly used task-specific parameters for all

baselines including MBOG across experiments (DMC and robosuite).

Parameter Value

Discount factor 0.99

Replay buffer size Unlimited (same with Tg)

Action repeats 2

Frame stack k 3

Pixel RGB image space ot ∈ O84×84×3

Maximum episode length 1,000 (DMC), 500 (robosuite)

Batch size 512 (walker {walk,stand} tasks), 256 (otherwise)

Total gradient steps Tg 1,000,000

Total seeding steps 5,000 (model-based), 4,000 (model-free)

Periodic evaluation steps during training 10,000

Number of episodes per evaluation during training 10

N steps for TD target 1 (model-based), 3 (model-free)

MLP hidden layer dimension 512 (model-based), 1024 (model-free)

Number of CNN convolution filters 32

Latent dimension 50

Target network EMA weight 1e-2

For model-free baselines, we compute N -step TD target for value function learning; (rt + rt+1 + · · · +
rt+N ) + γQ(st+N , π(st+N )). The image dimension used for training and evaluation is 84 × 84 × 9:

st = {ot, ot−1, ot−2} where ot ∈ O84×84×3. We stack the consequent images along the color channel axis

and repeat a specific amount of the same action extracted from the policy or model planning by following

prior works.

Table 7.2: Baseline hyperparameters. We list algorithm-specific hyperparameters for model-free

baselines across experiments (DMC and robosuite). We denote that other hyperparameters not described

here can be found in Table 7.1.

Hyperparameter Value

Periodic critic target network (θ−) update steps 1

Clip constant for the stochastic actor 3e-2

Learning rate for the auxiliary task 3e-4 (SGQN)

Attribution mask quantile 0.95 (SGQN)

2https://github.com/nicklashansen/tdmpc
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Table 7.3: MBOG hyperparameters. We list all hyperparameters of MBOG for completeness while

highlighting a subset of hyperparameters only provided to MBOG. We borrow the same hyperparameters

of TD-MPC [15].

Hyperparameter Value

// Replay buffer

Prioritized experience replay parameters α = 0.6, β = 0.4

// MPC planning

Planning Horizon H 5

Initial parameters for CEM µ0 = 0, σ0 = 1

Population size 512

Elite fraction 64

Iterations 8

Policy fraction 5%

Particles 1

Momentum coefficient 0.1

Sampling temperature 0.5

// Model learning

Temporal coefficient λ 0.5

Reward loss coefficient c1 0.5

Q value loss coefficient c2 0.1

Latent consistency loss coefficient c3 2

// Optimization

Learning rate η 3e-4

Periodic target network (θ−) update steps δ 2

Optimizer Adam(β1 = 0.9,β2 = 0.999)

Exploration schedule (std) Linear(0.5, 0.05, 25,000 steps)

Planning horizon schedule Linear(1, 5, 25,000 steps)

// MBOG hyperparameters

Weak random augmentation Υw random-shift : padding p = 4

Strong random augmentation Υs random-overlay :

linear interpolation δ = 0.5

Image dataset D = Places [51]

Weak and strong augmentation ratio ζ 1.0

Regularization coefficient α 1

7.2 Discussions

Model-based RL. Our main contribution to this paper is to present a model-based RL method that

empirically demonstrates strong generalization ability without sacrificing sample efficiency. We have

compared two state-of-the-art model-based RL backbone algorithms, TD-MPC [15], and DreamerV2 [11],

which exhibit strong sample efficiency over diverse continuous control problems. The reason for not

choosing update-to-date versions of each model-based RL method is to reproduce the proper results
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with the original paper (e.g., TD-MPC compared its performance with DreamerV2, which was the

most recent version of the Dreamer series) and to benefit the architecture itself without further technical

considerations since most recent versions of each algorithm, TD-MPC2 [16], and DreamerV3 [12], contain

extensive techniques for improving performance. We provide reproduced empirical results to validate

that TD-MPC would exhibit better sample efficiency than DreamerV2 in Figure 7.4. Since we aim

to achieve sample-efficient RL for observational generalization, we choose TD-MPC as our backbone

model-based RL algorithm. To provide a more rigorous comparison of the two models, those two model-

based algorithms train and exploit the latent transition model that takes the low-dimensional latent

state and action as inputs and outputs the next latent state to solve continuous control tasks with

the high-dimensional image input. Dreamer learns the world model by predicting latent future states,

actions, and state-value functions (V functions) and reconstructing the given image by contrastive

learning. In contrast, TD-MPC trains the world model by predicting latent future states, actions, and

action-value functions (Q functions) and avoids reconstructing the high-dimensional images. While

Dreamer plans the optimal action with the trained world model and actor policy, TD-MPC derives the

action by planning an optimal action with the model predictive controller. Since Dreamer employs

representation learning with the reconstruction objective, adapting our method to Dreamer with the

reconstructive techniques for observational generalization [1, 43] would be exciting future work.

(a) Total comparison result. (b) Comparison over tasks in the DeepMind Control suite.

Figure 7.4: Comparison of sample efficiency between model-based RL methods. TD-MPC

demonstrates superior sample efficiency over DreamerV2 in 6 tasks in the DeepMind Control suite bench-

mark.

7.3 Additional Results

We provide entire results for extensive experiments here. Concerning the main results, we additionally

plot the generalization performance and sample efficiency across the tasks and evaluation types.
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(a) Evaluation results over environments and tasks.

(b) Sample efficiency over environments and tasks.

Figure 7.5: Additional experimental results over tasks. Episode returns and cumulative success

rates over tasks are reported in DMC and robosuite, respectively. All evaluation results are averaged

over 5 seeds and sample efficiency results are averaged over 10 episodes during training.

Overall performance. One can find that PIEG outperforms other baselines at the Door task in the

robosuite environment. We conjecture that PIEG demonstrates a strong generalization performance

at the Door task since PIEG exploits the pretrained encoder from ImageNet. ImageNet is a huge

dataset that contains diverse images from everyday lives, e.g. door images. Hence, we presume that

the representation encoded from the pretrained encoder might distinguish the object well while other

baselines should learn the effective representation first. This enables superior sample efficiency and

generalization performance for PIEG.
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(a) Episode return over evaluation types.

(b) Success rate over evaluation types.

Figure 7.6: Evaluation results over evaluation types. We compare the performance of baselines

in a total of 14 types. Generalizable RL methods show a monotonic decrease between original and

generalization types (e.g., original-easy-hard). All evaluation results are averaged over 5 seeds and

sample efficiency results are averaged over 10 episodes during training.

In Figure 7.6, we provide the relative performance of baselines between the training environment and

evaluation tasks. While all baselines indicate decreased performance depending on the severity of gen-

eralization, TD-MPC demonstrates the steepest decrease among the baselines. These results support

the idea that conventional model-based RL suffers from the distribution shift when the trained model

is given unseen input during evaluation. As one can see in Figure 7.5 and 7.6, almost every baseline

shows moderate generalization performance in DMC while struggling in the robosuite environment. We

suggest that current algorithms including state-of-the-art methods for observational generalization have

demonstrated limited results to some extent and there is room for further improvements in problem

formulation for better generalization.
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Figure 7.7: Evaluation results over evaluation types for options. We compare the performance

of our design choices in a total of 14 types. MBOG shows a monotonic decrease between original and

generalization types (e.g., original-easy-hard) compared to other options. All evaluation results are

averaged over 5 seeds and sample efficiency results are averaged over 10 episodes during training.

Design choices. We provide additional experimental results comparing possible options over environ-

ments in Section 5.2. While other options prove competitive performance, MBOG CURL struggles for every

generalization category except cam pos task. MBOG CURL outperforms in cam pos hard task compared to

other choices. We conjecture that cam pos task does not disturb the original image with color, leading

to a trivial decrease in performance of MBOG CURL that does not employ strong augmentation. MBOG CONV

shows impressive performance in light color and object color tasks, where the image is mainly distracted

with colors. Since MBOG CONV augments the image with random convolution operation during training,

MBOG CONV may show relatively strong generalization performance compared to other baselines. Example

images comparing the popular strong augmentation techniques can be found in Figure 7.8.

Figure 7.8: Example images comparing strong augmentations. Illustrations of how the image is

augmented in walker walk task. (Left) Original image, (Center) random-overlay augmentation, (Right)

random-conv augmentation.

Embedding visualization. We provide full plots for embedding experiments. We choose cheetah run

for embedding experiments. We collect a set of horizontal images with the trained model across the
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training and evaluation tasks and feed the images to the model to extract representations. For given

states st:t+H , we aggregate the horizontal representations from the latent transition model and instanta-

neous representations from the encoder: horizontal representations z×k+1 = dθ(st, at)∀k ∈ [t, t +H − 1];

instantaneous representations z∗k = hθ(sk)∀k ∈ [t, t + H]. After, we obtain 2D latent coordinates from

the aggregated representations using U-MAP [28].

Figure 7.9: Visualization of types for the embedding experiment. We plot horizontal images

used for extracting representations over the generalization types. Each row stands for a different task

and each column stands for the horizontal time step.

In Figure 7.10, the embeddings from TD-MPC show inconsistent representations while MBOG indicates

consistent and aligned representation over generalization tasks. Furthermore, MBOG demonstrates

accurate predictions of latent transition dynamics models across tasks, supporting the assertion that

learning consistent representation plays a significant role in enhancing the generalization performance.

31



(a) Visualization of embeddings from TD-MPC.

(b) Visualization of embeddings from MBOG.

Figure 7.10: Visualization of embeddings. Star and X markers correspond to z∗t and z×t , respectively.

Arrows indicate sequential transitions from each representation. Trajectory segments are st:t+H .
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