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Abstract

Learning a generalizable reinforcement learning
(RL) agent to the unseen visual image in a zero-
shot manner enables further deployments of deep
RL into the real world. The field has witnessed
significant progress in the prior literature by lever-
aging data augmentation and auxiliary represen-
tation learning techniques. However, simultane-
ously achieving superior sample efficiency and
generalization ability still remains challenging for
visual RL agents. In this work, we devise Visual
Generalization in MOdel-Based RL (ViGMO),
a novel model-based RL method to encourage
visual generalization with superior sample effi-
ciency by blending a popular model-based RL ar-
chitecture with groundbreaking recipes from the
prior literature in model-free RL. Our key idea is
to constrain the model to exhibit a consistent pre-
diction ability regardless of visual perturbations
during training. We provide extensive empirical
results on the sample efficiency and generaliza-
tion ability of visual RL agents in diverse environ-
ments and tasks.

1. Introduction
Deep reinforcement learning (DRL), an interconnected field
of deep neural network and reinforcement learning, has
pioneered diverse sequential decision-making problems, in-
cluding games (Silver et al., 2016; Van Hasselt et al., 2016;
Wang et al., 2016; Hessel et al., 2018) and robotic loco-
motion (Lillicrap, 2015; Schulman, 2015; Schulman et al.,
2017; Haarnoja et al., 2018; Fujimoto et al., 2018). Visual re-
inforcement learning has achieved impressive successes by
expanding the low-dimensional state space of a DRL agent
to a high-dimensional pixel image space across complex
continuous control problems (Laskin et al., 2020a; Yarats
et al., 2021b).
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Figure 1. Out-of-distributional representation. Distribution shift
occurs when sampled states between training and evaluation dis-
tribution differ. strain

t and seval
t are example states. hθ and dθ are

the encoder and transition dynamics, z and z′ are extracted repre-
sentations from in-distributional and out-of-distributional states,
respectively. a is an action and Z is the distribution of z where
representations are projected from only the training distribution.
Subscript t represents a time step of the environment transition.

Learning a visuomotor policy that derives an optimal ac-
tion from pixel image input presents unique challenges; for
instance, the generalization of the learned model. While
the inductive bias of the visual feature extractor (i.e., CNN)
enables efficient behavior learning of a DRL agent, the inher-
ent nature of CNN also hampers the broader generalization
capability of the learned policy. Alleviating this general-
ization issue has induced numerous challenges since deep
RL often couples policy learning and representation learn-
ing. Previous approaches have fabricated novel solutions by
learning robust representation to visual disturbances (Laskin
et al., 2020b; Nair et al., 2022; Yuan et al., 2022; Wang et al.,
2023; Yang et al., 2024), applying stronger data augmenta-
tions (Laskin et al., 2020a; Hansen & Wang, 2021; Hansen
et al., 2021; Huang et al., 2022), and stabilizing value func-
tion learning (Hansen et al., 2021; Liu et al., 2023; Huang
et al., 2024).

While visual RL agents have demonstrated impressive vi-
sual generalization performance across diverse continuous
control tasks, those agents still suffer from poor sample
efficiency. Interestingly, a common ground shared across
these approaches is that they fall into the model-free RL
category where the agent mainly relies on the Q value func-
tion for policy learning. However, the nature of model-free
RL that updates the policy incrementally and contains weak
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Improving Visual Generalization in Model-Based Reinforcement Learning

inductive bias (Botvinick et al., 2019) essentially decreases
the sample efficiency of the RL agent. Furthermore, the
broken randomness (Xu et al., 2023) or high-dimensional
state and action spaces (Yarats et al., 2021c) worsen this
problem. Alongside model-free RL, groundbreaking ideas
in model-based RL have proven their superior performance
and sample efficiency in diverse and challenging continu-
ous control suites in recent years (Hafner et al., 2019b;a;
Hansen et al., 2022; 2023; Hafner et al., 2023). By learning
a latent transition dynamics model with additional compo-
nents regarding the model, current model-based RL has
validated scalability to higher dimensions and brilliant per-
formance on more complex domains. However, naively
adopting model-based RL into visual generalization can be-
come problematic; the learned latent transition dynamics
model would be conditioned on out-of-distributional rep-
resentations, leading to a collapse of model-based RL in
Figure 1.

In this paper, we propose ViGMO; improving Visual
Generalization in MOdel-based reinforcement learning, a
model-based RL that empirically demonstrates strong gener-
alization ability over unseen image input without sacrificing
sample efficiency by employing recipes from model-free RL.
ViGMO consists of three key factors for improving perfor-
mance: (1) applying weak and strong data augmentations to
given image input for sample efficiency and generalization,
(2) predicting a consistent latent representation simulated
by the latent transition dynamics, and (3) regularizing the
encoder to extract consistent representations over differ-
ently augmented input. We perform extensive experiments
to verify our design choice contributes to superior perfor-
mance on the generalization benchmark (Yuan et al., 2024)
across DM-Control (Tassa et al., 2018) and Robosuite (Zhu
et al., 2020) benchmarks. Through a comprehensive abla-
tion study, we prove that the proposed design becomes the
best fit for solving visual generalization with model-based
RL.

2. Related Works
2.1. Visual Generalization in Deep RL

Learning a policy that outputs an action maximizing the ex-
pected cumulative return under different observation spaces
between training and evaluation produces a unique chal-
lenge. Visual generalization refers to how an agent trained
with visual input maximizes the cumulative return during
evaluation where the input images for evaluation are visually
augmented with perturbations (e.g., background color) and
unseen during training. Previous approaches often incorpo-
rate model-free value-based algorithms with representation
learning (Laskin et al., 2020b; Nair et al., 2022; Bertoin
et al., 2022; Yuan et al., 2022; Wang et al., 2023; Yang et al.,
2024), data augmentation (Lee et al., 2019; Laskin et al.,

2020a; Hansen & Wang, 2021; Hansen et al., 2021; Huang
et al., 2022), and stabilization of value learning (Hansen
et al., 2021; Liu et al., 2023; Huang et al., 2024). Regarding
data augmentation, enlarging the limited dataset with weakly
augmented, i.e. random shift augmentation (Yarats et al.,
2021a), visual data contributes to the significant sample-
efficient RL with visual input (Laskin et al., 2020a; Yarats
et al., 2021b;a), whereas employing a relatively strong aug-
mentation, e.g. random convolution or overlay, improves
generalization capability of the agent over unseen image
inputs during training (Hansen & Wang, 2021; Hansen et al.,
2021). Since jointly learning low-dimensional compact rep-
resentation from a high-dimensional raw image while cap-
turing optimal behavior from reward signal in an end-to-end
manner usually necessitates a large quantity of dataset (Pari
et al., 2021; Stooke et al., 2021), learning an encoder that
can extract helpful information for downstream RL training
from data plays a critical role in visual generalization. In
this work, we address the visual generalization problem in
RL similarly to previous works. However, we jointly fo-
cus on the sample efficiency problem during RL training in
addition to generalization performance, where most prior
works have been overlooked. We contend that considering
the sample efficiency problem is as significant as the gener-
alization performance since we are given only a limited set
of training images according to problem formulation, which
exacerbates when a pool of evaluation images increases.

2.2. Model-Based Reinforcement Learning

Expanding previous value-based RL methods (Sutton, 2018)
with the deep neural network has enabled successful adop-
tions of conventional RL to challenging domains, includ-
ing a high-dimensional state or continuous action space.
However, a prerequisite of a huge bucket of experience
replay to learn a well-performing policy becomes a pri-
mary bottleneck for RL practitioners (Yarats et al., 2021c).
Model-based RL has been introduced as an alternative ap-
proach that trains a proxy of the environment transition
model and exploits the learned model to generate synthetic
data for further policy learning (Sutton, 1991; Deisenroth
& Rasmussen, 2011), allowing the agent to simulate fu-
ture states and plan the best action to maximize the ex-
pected return. Since the proxy model is trained via a lim-
ited pool of transitions, using the ensembles of the trained
model (Buckman et al., 2018; Kurutach et al., 2018; Jan-
ner et al., 2019) alleviates the uncertainty arising from the
imperfect model. Learning a world model that simulates
future states usually from high-dimensional observations
with a latent sequential transition model (Ha & Schmid-
huber, 2018) demonstrates superior sample efficiency and
downstream RL performance. Formally, learning a recurrent
transition model while reconstructing future images with
encoder-decoder structure (Hafner et al., 2019b;a; 2023) or
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Improving Visual Generalization in Model-Based Reinforcement Learning

combining the planning with model predictive controller
without reconstructions (Hansen et al., 2022; 2023; Zhao
et al., 2023) proves successful adoption to continuous con-
trol of more complicated domains. In this work, we choose
TD-MPC2 (Hansen et al., 2023) as a backbone model-based
RL architecture for visual generalization, which has demon-
strated superior sample efficiency over another state-of-the-
art architecture, DreamerV3 (Hafner et al., 2023). We pro-
vide further discussions concerning model-based RL in Ap-
pendix C.

3. Preliminaries
3.1. Problem Formulation

We design the visual generalization problem as the Partially
Observable Markov Decision Problem (POMDP) (Bellman,
1957). POMDP is defined as a tuple ⟨S,O,A, T , r, γ⟩,
where S is the state space, O is the observational space,
A is the action space, T : S ×A 7→ S is the transition dy-
namics probability, and r : S ×A 7→ R is the reward func-
tion. The agent receives not the state directly but the high-
dimensional image from the observation space O. Likewise
in (Yarats et al., 2021b; Hansen et al., 2021), we define the
state st as a stack of consequent images for simplicity, i.e.
st = {ot, ot−1, ot2 , . . . , ot−k+1} where st ∈ S, ot ∈ O; t
and k is the environment time-step and the number of im-
age stacks, respectively. The goal of the agent is to find an
optimal policy π∗ that maximizes the cumulative expected
return Eat∼π(·|st)

∑∞
t=0 γ

tr(st, at) during evaluation where
the agent receives perturbed images (e.g., background ap-
pearance).

3.2. Temporal Difference learning for MPC

Our method is built upon TD-MPC2 (Hansen et al., 2023),
a scalable and robust model-based RL architecture that com-
bines temporal difference learning (Sutton, 2018) for ter-
minal Q value function with the model predictive control
(MPC) for planning. TD-MPC2 is a latent space decoder-
free world model that jointly learns parameters of the model:
(i) a representation z = hθ(s, e) by encoding a stack of
high-dimensional inputs s into a low-dimensional represen-
tation z with an encoder hθ, (ii) a latent dynamics model
z′ = dθ(z, a, e) that predicts the next latent state z′ given
current latent state z and action a, (iii) a reward function
r̂ = Rθ(z, a, e) that predicts the one-step reward, (iv) a Q
value function q̂ = Qθ(z, a, e) that predicts the state-action
value function, and (v) a prior policy â ∼ πθ(z, e) that is
trained to maximize the Q value function Qθ and used as
a guiding policy for planning. z′ and s′ are the successor
(latent) state while z and s are predecessor (latent) state,
respectively. While the original TD-MPC2 can be used for
both single-task and multi-task control-centric world mod-
els with the task embedding e, we employ TD-MPC2 as

a single-task visual world model in this work due to pro-
hibitively large budget for of computing cost. Hence, we
will omit the notion of e for clarity.

During online training, the world model is trained via min-
imizing a weighted loss over the prediction horizon given
the experience replay B:

LTD-MPC2(θ;Lrew,LQ,Ldyn,B)

= EΓ∼B

[
t+H∑
i=t

λi−tLTD-MPC2(θ;Lrew,LQ,Ldyn,Γ)

]

= EΓ∼B

[
t+H∑
i=t

λi−t

(
c1Lrew(θ; zi, ai, ri)

+ c2LQ(θ; zi, ai, ri, z̃i+1) + c3Ldyn(θ; zi, ai, z
targ
i+1 )

)]
,

(1)
with each prediction loss:

Lrew(θ; zt, at, rt) = CE (Rθ(zt, at), rt) ,

LQ(θ; zt, at, rt, zt+1)

= CE
(
Qθ(zt, at), sg

(
rt + γQθ−

(
zt+1, πθ(zt+1)

)))
,

Ldyn(θ; zt, at, zt+1) = ∥dθ(zt, at)− sg (hθ(st+1)) ∥22,

where a horizontal trajectory segment Γ =
(st, at, rt, st+1)t:t+H with a horizon H is sampled
from the replay buffer B and λ ∈ R+ is a constant
decaying over the horizon to weight closer predictions
higher. Lrew,LQ,Ldyn are the reward, Q value, and
latent transition dynamics prediction loss, respectively, and
ci ∈ R+, i = 1, 2, 3 are the coefficients balancing each loss.
θ− stands for exponentially moving average target param-
eters of online parameter θ, sg is the stop-grad operator
that prevents the computed gradient from influencing the
remaining gradient computations. CE is the cross-entropy
loss function that performs discrete regression tasks. Since
we build our method upon TD-MPC2 without changing
underlying planning (inference) for choosing an optimal
action, we refer the reader to the original paper (Hansen
et al., 2023) for further details on planning.

4. Method
In this section, we present ViGMO, a model-based RL
method that empirically demonstrates strong generalization
ability over unseen image input without sacrificing sample
efficiency by employing verified recipes from the model-
free RL realm. ViGMO adopts advanced techniques for
improving visual generalization: (1) weak and strong data
augmentations to given image input for sample efficiency
and generalization, (2) consistent latent representation sim-
ulated by the latent transition dynamics, and (3) regulariza-
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Improving Visual Generalization in Model-Based Reinforcement Learning

Figure 2. An overview of the ViGMO architecture. (Left) Weak and strong augmentations are implemented for sample efficiency and
generalization. (Center) Weakly augmented representation guides the mixed horizontal representations as a target for consistent latent
dynamics predictions. (Right) The encoder is regularized to extract consistent representation regardless of augmentations.

tion that allows the encoder extract consistent representa-
tions over differently augmented input. Fundamentally, our
method is compatible with any model-based RL method that
learns the latent transition dynamics with a visual feature
extractor (the encoder) since we do not constrain any change
of the underlying algorithm. In the following, we explain
how ViGMO tackles the problem by leveraging the core
components under the hood.

4.1. Architectural Overview

An overview of ViGMO can be found in Figure 2. We build
our method on top of TD-MPC2, a sample-efficient model-
based architecture, by fusing the world model learning with
data augmentations and representation learning. We first
employ data augmentations for latent world model learning
by applying weak and strong augmentations to the original
image, subsequently. Encoded representations from hetero-
geneous images are mixed into the latent representation for
world model learning (e.g., reward and transition model).
Since the world model is trained over the prediction horizon
using recursive inference, we then regularize the latent dy-
namics and encoder to have consistent representations over
the horizon regardless of augmentations. See Appendix B
for comprehensive implications behind the idea.

4.2. Weak and Strong Augmentation

We refer to weak augmentation as employing a relatively
minor change in an image (e.g., random shift transformation)
and strong augmentation as applying a significant change

in the image (e.g., random color convolution). Following
prior works, we adopt random-shift (Yarats et al., 2021a)
as weak and random-overlay (Hansen & Wang, 2021) as
strong augmentation in this work. Consider a set of indices
I = {1, 2, . . . , B} where B is the size of the batch. Let
the indices of the batch be weakly and strongly augmented
as Iw and Is, respectively. Then, the representations from
weakly and strongly augmented images at time-step t, i.e.,
zwt and zst , become:

zwt = hθ(τ
w(swt , υ

w)), swt = {st,i : i ∈ Iw},
zst = hθ(τ

s(sst , υ
s)), sst = {swt,j : j ∈ Is}, (2)

where zt = zwt ⊕ zst is the total representation at time-step
t where ⊕ is element-wise concatenation, τ : S ×Υ 7→ S
is a random augmentation function with a parameter υ ∼ Υ,
and st,n corresponds to the state that is collected by choos-
ing elements in st of an index n along the batch dimension.
Superscripts w and s state weak and strong augmentation.
Iw and Is are subsets of I where subsets are complemen-
tary and disjoint subsets, i.e., Iw ∼ Uniform(1, B), Is =
I/Iw, |Iw|/|Is| = ζ ∈ R. Through all experiments, we
set ζ = 1.0: divide the original batch in half for weak and
strong augmentation. Although the representation zt is re-
cursively used for world model learning over the horizon,
we apply these augmentations only at time-step t.

4.3. Consistency on Latent Transition

To enable sample-efficient model learning without sacrific-
ing generalization performance, we constrain the latent tran-
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sition dynamics model to have consistency toward weakly
augmented representation zwt . After the initial representa-
tion zt is encoded with weak and strong augmentation in
the previous section, the latent transition dynamics model
predicts the successor latent representation zt+1 given pre-
decessor zt and action at in Equation 1. The parameters of
the latent transition dynamics model are updated by solving
a regression problem: L(θ; dθ) = MSE(dθ(zt, at), zt+1)
where zt+1 = sg(hθ(st+1)). We implement the weak aug-
mentation, i.e., random-shift, to the target images to gener-
ate consistent target representation:

Lcon(θ; zt, at, z
w
t+1) = ∥dθ(zt, at)− sg(zwt+1)∥22,

where zwt+1 = hθ(s
w
t+1) is the representation extracted from

a weakly augmented state swt in Equation 2.

4.4. Regularization over Augmentation

So far, the latent transition model and other components
of the world model are constrained to predict consistent
outputs regardless of data augmentations. Additionally, fol-
lowing (Hansen & Wang, 2021), we implement the weak
and strong augmentation to the state st to generate two
different views of the original image for regularization. Sub-
sequently, we train the encoder hθ to extract applied strong
augmentation in the weakly augmented image by minimiz-
ing regularization loss:

Lreg(θ; z
w
t , z

s
t ) =

∥∥∥∥ zst
∥zst ∥2

− zwt
∥zwt ∥2

∥∥∥∥2
2

,

where zwt = hθ(s
w
t ) and zst = hθ(s

s
t ) are the representa-

tions extracted from the weak and strong-augmented state
in Equation 2.

Aggregated learning objectives. We incorporate three key
components to the world model learning procedure of TD-
MPC2 over the prediction horizon in Equation 1 as follows:

LViGMO(θ;B,Υw,Υs)

= EΓ∼B

[
Eυw,υs

[
t+H∑
i=t

LViGMO(θ; Γ, υ
w, υs)

]]

= EΓ∼B

[
Eυw,υs

[
t+H∑
i=t

λi−tLTD-MPC2(θ;Lrew,LQ,Lcon,Γ) + αLreg(θ; z
w
i , z

s
i )

]]
,

(3)

where B is the experience replay and α is a coefficient that
balances the gradients of world model learning and regular-
ization. υw ∼ Υw and υs ∼ Υs are sampled augmentation
parameters from the distribution of weak and strong random
augmentations, respectively. In principle, our method can
be injected into any model-based RL method that trains
the latent transition dynamics model; we highlight the dif-
ference of world model learning with TD-MPC2 as red
color in Equation 3. We summarize our method in Algo-
rithm 1. We exclude the learning process of the prior policy

Algorithm 1 World model learning in ViGMO
Input: Horizontal replay buffer B; Horizon H; Weak and
strong augmentation functions τw, τs; Network update
rates η, δ; Regularization coeff. α
while not converged do

for gradient-step tg = 1, 2, . . . , Tg per episode do
// Sample horizontal transitions
(st, at, rt, st+1)t:t+H ∼ B
L← 0 // Initialize cumulative loss
for i = t, t+ 1, . . . , t+H do

υw ∼ Υw, υs ∼ Υs // Sample aug. parameters
L← L+ LViGMO(θ; Γ, υ

w, υs) // Eqn. 3
end for
θ ← θ + η 1

H∇θL // Update online parameters
θ− ← (1− δ)θ− + δθ // Update target parameters

end for
end while

πθ in Algorithm 1 since we employ the same procedure in
TD-MPC2. We provide additional details regarding imple-
menting ViGMO and hyperparameters in Appendix A.

5. Experiments
In this section, we provide extensive empirical observation
of ViGMO on diverse benchmarks with sophisticated exper-
iment designs. We evaluate the generalization performance
and sample efficiency with other baselines in relevant fields.
We address the following questions through experiments:
(i) how ViGMO compares with other competitive baselines
in visual generalization and sample efficiency, (ii) how our
design choice affects the performance of ViGMO, and (iii)
how predicting consistent representation over the horizon
impacts on visual generalization. We present our implemen-
tation details concerning the generalization benchmark and
analyze the performance in the following.

5.1. Experimental Setup

In this section, we provide experimental settings concerning
the environments and baselines for competitive performance
comparison.

Environments. We evaluate ViGMO over 6 tasks in the
DeepMind control suite (DMC, (Tassa et al., 2018)) and
2 tasks in robosuite (Zhu et al., 2020): cartpole swingup,
finger spin, walker walk, walker stand, cheetah run, and
reacher easy in DMC; Door and Lift in robosuite. We
illustrate the tasks and environments in Figure 3. We train
agents for each task with 1M gradient steps and evaluate the
trained agents for 5 seeds. See further details regarding the
environment and task setup in Appendix A.

Baselines. We select state-of-the-art baselines in visual gen-
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eralization problems to compare ViGMO. Specifically, in
model-free RL, SVEA (Hansen et al., 2021) stabilizes off-
policy Q-learning with data augmentation, SGQN (Bertoin
et al., 2022) adapts self-supervised learning with attribution
map and regularizes Q value learning, SRM (Huang et al.,
2022) applies a spectrum augmentation to increase robust-
ness toward spatial corruption, and PIEG (Yuan et al., 2022)
plugs large CNN pretrained with ImageNet for consistent
representation. To compare the performance of ViGMO
with backbone model-based RL, we also evaluate the per-
formance of TD-MPC2. Regarding implementation details
of baselines, see Appendix A.

Figure 3. DeepMind Control Suite and Robosuite tasks. Lo-
comotion and manipulation continuous control tasks for visual
generalization. We address a set of diverse visual generalization
tasks for each environment.

5.2. Results

In this section, we provide rigorous results concerning each
experiment we have designed in Section 5. We first sketch
the background of each experimental setup and then analyze
empirical results in the following.

5.2.1. VISUAL GENERALIZATION AND SAMPLE
EFFICIENCY

We provide aggregated performance comparison results in
Figure 4; Table 1 and 2. ViGMO proves superior sample
efficiency over model-free RLs and preserves similar sam-
ple efficiency compared to the backbone model-based RL,
TD-MPC2, which has demonstrated state-of-the-art sample
efficiency. In addition, ViGMO outperforms other baselines
in DMC and demonstrates remarkable generalization per-
formance in robosuite experiments. It is worth noting that
ViGMO outperforms its backbone model, TD-MPC2, in
generalization performance with a trivial sacrifice of sample
efficiency. Considering that ViGMO does not enforce any
algorithmic modifications in model learning and planning
with the model, the significant margin of generalization per-
formance supports the validity of the proposed method to
alleviate the out-of-distribution shift problem in visual gen-
eralization. See discussions regarding experimental results
in Appendix D.2.

(a) DMC results. Episode returns are averaged over 14 evaluation
tasks.

(b) Robosuite results. Success rates are averaged over 3 evaluation
tasks.

Figure 4. Graphical results. (Left) Sample efficiency and (Right)
generalization performance. Episode return and cumulative suc-
cess rate for evaluations during training are reported in DMC and
robosuite, respectively. Evaluation during training is averaged over
10 episodes. The dashed line is an oracle for comparing sample
efficiency using DrQ-v2.

5.2.2. ABLATION OF DESIGN CHOICES

We investigate several possible design choices for improving
the generalization performance of model-based RL. Toward
this objective, we examine the variants of ViGMO: the ran-
domness of augmentations over the horizon, different strong
augmentation, and another auxiliary task for representation
learning. In the following, we describe how we compare
the possible candidates of ViGMO and then we provide a
summarized result in Figure 5. See discussions concerning
ablations in Appendix D.3

Dynamic and consistent augmentations. Since typical
model-based RL predicts synthetic future transition samples
over the horizon, how we should control the data augmen-
tations over the horizon is still questionable; it might be
unclear whether applying dynamic or consistent augmen-
tation over the horizon benefits the generalization perfor-
mance. ViGMO augments the states with both weak and
strong augmentation over the horizon to constrain latent
consistency (Section 4.3) and regularization (Section 4.4).
The horizontal states st:t+H from time-step t to t+H are
augmented as following:

swt:t+H = {τwk (sk, υ
w
k ) : υ

w
k ∼ Υw, k ∈ {t, t+ 1, . . . , t+H}}

sst:t+H = {τsk(swk , υs
k) : υ

s
k ∼ Υs, k ∈ {t, t+ 1, . . . , t+H}},
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Table 1. Quantitative comparison for sample efficiency. Inspired by (Mai et al., 2022), Sample efficiency of competitive baselines with
the same oracle, DrQ-v2. Scores are the average number of episodes necessary for achieving 25%, 50%, and 75% percentiles of the oracle
score. Scores of the backbone architecture, TD-MPC2, are provided to contrast the sample efficiency difference of ViGMO. See further
details in Appendix D.1.

ENV PCTL. SVEA SGQN SRM PIEG VIGMO (OURS) TD-MPC2

DMC
25% 100 313 90 235 65 43
50% 211 353 190 521 225 85
75% 360 556 315 543 298 215

ROBOSUITE
25% 1380 2000 1080 1070 240 190
50% 1600 2000 1500 1510 480 440
75% 1840 2000 1720 1820 1030 770

Table 2. Quantitative comparison for visual generalization. Visual generalization performance comparison over different environments
and tasks. Scores of the backbone architecture, TD-MPC2, are provided to contrast the visual generalization difference of ViGMO.

ENV TASK SVEA SGQN SRM PIEG VIGMO (OURS) TD-MPC2

DMC

CARTPOLE SWINGUP 819.67 635.06 816.51 655.53 667.91 705.41
FINGER SPIN 814.97 760.97 814.93 780.77 886.71 775.93
WALKER WALK 767.19 471.38 886.38 880.76 871.15 706.39
WALKER STAND 947.18 876.18 142.16 937.51 912.48 778.31
CHEETAH RUN 435.99 226.14 502.99 249.32 479.59 323.59
REACHER EASY 801.57 217.68 834.44 586.87 949.89 731.58
AVG. 764.43 531.24 666.23 681.79 794.62 670.20

ROBOSUITE
DOOR 0.00 0.00 0.01 0.92 0.38 0.06
LIFT 0.25 0.00 0.27 0.23 0.15 0.16
AVG. 0.13 0.00 0.14 0.57 0.26 0.11

where the random augmentation function τ may depend on
time-step or not. We refer to τt as consistent augmentation
over the horizon if τt = τt+k∀k ∈ [0, H] is satisfied. If the
augmentation function differs over the horizon, i.e., τt ̸=
τt+k,∀k ∈ [0, H], we denote it as a dynamic augmentation
function. ViGMO adopts the dynamic augmentation for
both weak and strong augmentations, i.e., τt ̸= τt+k,∀k ∈
[0, H]. We denote ViGMO with consistent augmentation as
ViGMO CONST AUG later in experiments.

Different strong augmentation. Motivated by prior obser-
vations, we choose random-overlay as a strong augmenta-
tion for visual generalization in model-based RL. However,
as proposed in (Lee et al., 2019; Laskin et al., 2020a; Hansen
et al., 2021), other strong augmentations can become strong
candidates for visual generalization in Deep RL. Among
potential augmentations, we opt random-conv as another
strong augmentation method, which has exhibited remark-
able performance in previous works. Precisely, we refer
random-overlay and random-conv augmentation as:

τs,overlay(o, õ) = (1− δ)o+ δõ

τs,conv(o, w) = CONV(o, w)

where o ∈ OB×C×H×W is the original images with the
batch size B, channel C, height H , and width W , respec-
tively. δ is a linear interpolation coefficient, õ ∼ D is
an overlaying image sampled from a dataset unrelated to
the task. We set the default value of δ as 0.5. CONV

stands for 2-dimensional convolution operation over the
batch dimension and w ∈ RN×Ck×Hk×Wk : w ∼ N (0, 1)
is the convolution filter randomly initialized from the nor-
mal distribution and kernel number N , channel Ck, height
Hk, and width Wk, respectively. We implement the same
strong augmentation over the channel dimension to obtain
the state st = {ot, ot−1, · · · , ot−k+1}. While ViGMO
chooses random-overlay as strong augmentation, we denote
ViGMO CONV as ViGMO replaced with random-conv.

Contrastive learning for the representation learning task.
Learning task-specific representation for downstream vision-
based RL plays a critical role in sample efficiency and gen-
eralization performance. Prior literature (He et al., 2020;
Laskin et al., 2020b; Nair et al., 2022; Bertoin et al., 2022;
Yuan et al., 2022) has explored the field by leveraging pop-
ular representation learning techniques in computer vision.
As in Section 4.4, we intend the encoder to predict robust
representation regardless of distracting components (e.g.,
background image). Hence, we consider two variants of
auxiliary representation learning task: SODA (Hansen &
Wang, 2021) and CURL (Laskin et al., 2020b) where we
use the same auxiliary task from SODA for representation
learning in Section 4.4:

LCURL(θ; q, k) =

(
log

exp qTWk+

exp qTWk+ +
∑B

j=0 exp q
TWkj

)
,

where q = hθ(τ
w(st, υ

q)), k = hθ−(τw(st, υ
k)) are an-
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chor and key; W is the weight kernel for bilinear product.
υq and υk are separately sampled parameters for generating
anchor and key images from the same distribution Υw. We
denote ViGMO CURL as ViGMO replacing the regulariza-
tion loss (i.e., Lreg = LSODA) with LCURL.

Figure 5. Ablation of design choices. (Left) Sample efficiency
and (Right) Generalization performance. Among the options,
ViGMO proves to be superior in experiments.

Aggreagated results. We provide the aggregated ab-
lation results in Figure 5. We compare ViGMO with
ViGMO CONST AUG, ViGMO CONV, and ViGMO CURL
in finger spin, cheetah run and walker walk tasks. ViGMO
proves superior sample efficiency and generalization per-
formance compared to other options, validating that the
proposed method is the most reasonable choice among avail-
able options. See further experimental details regarding this
comparison in Appendix D.3.

5.2.3. VISUALIZED CONSISTENT REPRESENTATION

To reduce the prediction error of the learned world model
for visual generalization, we propose a novel approach that
constrains the world model learning with data augmentation
and regularization. Hence, we experiment to validate the
motivation that ViGMO would demonstrate consistent pre-
diction ability regardless of perturbations while TD-MPC2
fails. We first collect the horizontal replay transitions by
rolling out the trained model and then feed the same inputs
(i.g., (st, at, st+1)t:t+H ) to ViGMO and TD-MPC2 to make
them predict the latent transitions. Since the representation
often has more than two dimensions, we visualize the col-
lected representations from the latent transition model dθ
with UMAP (McInnes et al., 2018) in Figure 6, a popu-
lar manifold learning method to extract two-dimensional
coordinates from high-dimensional representations.

In Figure 6, faded embedding trajectories are the previ-
ous time-step embeddings predicted by dθ. While TD-
MPC2 struggles to output consistent representation over
the horizon (i.e., largely error between original and back-
ground color types), ViGMO demonstrates unvarying and
aligned representation between the latent dynamics predic-
tions, zt+1 = dθ(zt, at), across generalization types. These
empirical observations support the idea in Figure 1 that pro-

jecting out-of-distributional representations to in-domain
training latent distribution is important to improve general-
ization performance. See additional discussions and results
in Appendix D.4.

Figure 6. Visualization of embeddings. (Top) ViGMO demon-
strates consistent representation predicted by dθ over the horizon
and types of evaluation. Faded trajectories are previous time-step
embeddings. (Bottom) Illustration of generalization types used for
extracting representation (original(⋆), background color easy(×),
and background color hard(⋄) from left-side).

6. Conclusion
We propose ViGMO, a model-based RL that empirically
demonstrates strong generalization ability over unseen im-
age observations without sacrificing sample efficiency by
employing recipes from model-free RL in visual general-
ization. By constraining the world model to predict con-
sistent representation with data augmentation and repre-
sentation learning, ViGMO successfully solves the visual
generalization problem under diverse visual generalization
benchmarks. We provide extensive results for comparing
the performance between competitive baselines including
model-free RL. Nevertheless, model-based RL should over-
come a few setbacks in visual generalization. First, the
performance gain of ViGMO is still limited to empirical
observations. While it is notable that ViGMO empirically
proves superior visual generalization, extending prior works
on theoretical foundations, e.g., (Ghugare et al., 2022; Lyu
et al., 2024), to visual model-based RL would be interesting
future work. Additionally, the pool of generalization for
model-based RL is limited to a narrow distribution of gener-
alization tasks. Incorporating further generalizations (Seo
et al., 2020; Beukman et al., 2024) into visual generalization
on model-based RL agents would be a thrilling future work
for the generalization community.
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Impact Statement
This paper investigates visual generalization with model-
based RL, which demonstrates strong performance in con-
tinuous control tasks in recent years. Improving the gen-
eralization of deep RL is a persistent challenge for deep
RL practitioners to employ the RL agent in the real world.
However, it is important to note that although this paper
presents strong empirical results in diverse environments,
the practical usages of visual RL agents are still limited
to simulated environments due to domain differences be-
tween the real world. Hence, we do not expect any potential
societal consequences of our work in the short term.
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A. Implementation Details
In this section, we describe the implementation details concerning the environments and baselines. We bring overall source
code for model-free RL baselines from RL-ViGen (Yuan et al., 2024)1. We thank the authors of RL-ViGen for providing
comprehensive source code.

Environment. We consider 14 evaluation types in DMC and 3 evaluation types in robosuite. In DMC, we account for the
type and difficulty of the tasks for visual generalization performance evaluation. By following (Yuan et al., 2024; Hansen &
Wang, 2021), we propose a unique set of visual generalization categories:

• background color: Change the background color of the agent (e.g., terrain grid or background sky color).

– Uniformly sample the parameters of the color, i.e., (r,g,b), from the easy and hard distribution in Figure 7(a) for
difficulties.

• cam pos: Change the position of the tracking camera’s focus by randomly adding noise offset.

– Let the initial position of the tracking camera’s focus be Xcam = (xi, yi, zi) in Euclid space.
– Sample a random offset δ from the uniform distribution with different bounds: U(−0.08, 0.08) for easy and
U(−0.15, 0.15) for hard difficulty.

– Inject the offset to the initial position of the camera; Xcam = (xi + δ, yi + δ, zi + δ).

• background video: Overlay the background with the randomly sampled natural video.

– Sample a random video with the same width and height as the original image from a set of natural videos (Stone
et al., 2021).

– Overlay the video only to the background sky for easy and to all backgrounds including the ground terrain other
than the agent for hard difficulty.

• light position: Change the position and orientation of the tracking light of the agent.

– Following the approach used in (Stone et al., 2021), the tracking light’s coordinate is parameterized as the spherical
coordinate; (ϕ, θ, r) where ϕ is azimuth, θ is inclination, and r is the radius of the sphere.

– Sample ϕ from the normal distribution N (π/6, 1) for easy and N (π/3, 1) for hard difficulty.
– Sample θ ∼ N (2π, 1) and transform the initial pose of the tracking light Xlight to (ϕ, θ, r) where r =

√
Xlight.

• light color: Change the color of the tracking light of the agent.

– Uniformly sample the parameters of the color, i.e., (r,g,b), from the easy and hard distribution in Figure 7(a) for
difficulties.

• moving light: Rotate the tracking light of the agent around the agent.

– Likewise in light position, the spherical coordinate of the tracking light is randomly initialized as (ϕ, θ, r).
– Let the speed of azimuth rotation as ∆ϕ = π/200 for easy and ∆ϕ = π/100 for hard difficulty.
– Rotate the tracking light counterclockwise along the azimuth axis at every time-step; (ϕ, θ, r) ← (ϕ, θ, r) +
(∆ϕ, 0, 0).

• object color: Change the color of the body color of the agent.

– Uniformly sample the parameters of the color, i.e., (r,g,b), from the easy and hard distribution in Figure 7(a) for
difficulties.

where easy and hard difficulties exist for 7 types of evaluation. In robosuite, we consider 3 types of evaluation with the
Franka panda manipulator: eval-easy, eval-hard, and eval-extreme, which is predefined by (Yuan et al., 2024). We illustrate
example images of DMC in Figure 7(b) and robosuite in Figure 8.

1https://github.com/gemcollector/RL-ViGen
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(a) Visualized parameter distribution for evaluation. (b) Visualized examples of evaluation sets.

Figure 7. Evaluation set in DMC. (Left) Uniformly sampled color parameters from predefined space for easy and hard difficulties in
DMC. Scaled color values are unnormalized for each color RGB space. (Right) 7 types and 2 difficulties for generalization performance
evaluation in DMC, walker walk task

Figure 8. Evaluation set in robosuite. 3 types of generalization evaluation in robosuite, Door task. Each row stands for train, eval-easy,
eval-hard, and eval-extreme; each column corresponds to a different scene in the same type.

Baselines. We consider 4 competitive baselines for model-free, SVEA (Hansen et al., 2021), SGQN (Bertoin et al.,
2022), SRM (Huang et al., 2022), and PIEG (Yuan et al., 2022), and for model-based, TD-MPC2 (Hansen et al., 2023),
algorithms for comparison. We bring the source code of the model-free baselines from the RL-ViGen benchmark since the
implementation is straightforward. We implement ViGMO upon the official repository of TD-MPC2 (Hansen et al., 2023)2.
We intentionally consider the same hyperparameters and task-specific parameters (e.g., action repeat) as many as possible
across experiments. We list common parameters used across tasks in Table 3 and algorithm-specific hyperparameters in
Table 5 and 4. We remark that we pursue unified task-specific parameters for reproducible results and concise comparison of
baselines.

2https://github.com/nicklashansen/tdmpc2
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Table 3. Common hyperparameters. Commonly used task-specific parameters for all baselines including ViGMO across experiments
(DMC and robosuite).

Parameter Value
Discount factor 0.99
Replay buffer size Unlimited (same with Tg)
Action repeats 2
Frame stack k 3
Pixel RGB image space ot ∈ O84×84×3

Maximum episode length 1,000 (DMC), 500 (robosuite)
Batch size 512 (walker {walk,stand} tasks), 256 (otherwise)
Total gradient steps Tg 1,000,000
Total seeding steps 2,500, 1,250 (model-based; DMC and robosuite), 4,000 (model-free)
Periodic evaluation steps during training 10,000
Number of episodes per evaluation during training 10
N steps for TD target 1 (model-based), 3 (model-free)
MLP hidden layer dimension 512 (model-based), 1024 (model-free)
Number of CNN convolution filters 32
Latent dimension 512 (model-based), 50 (model-free)
Activation fn. LayerNorm + Mish (model-based), ReLU (model-free)
Target network EMA weight 1e-2

Table 4. ViGMO hyperparameters. Hyperparameters of ViGMO for completeness while highlighting a subset of hyperparameters only
provided to ViGMO. We borrow the same hyperparameters of TD-MPC2 (Hansen et al., 2023).

Hyperparameter Value
// MPC planning
Planning Horizon H 3
Std. range σ ∈ [0.05, 2]
Population size 512
Elite fraction 64
Iterations 6
Policy prior samples 24
Sampling temperature 0.5
// Model learning
Temporal coefficient λ 0.5
Reward loss coefficient c1 0.1
Q value loss coefficient c2 0.1
Latent consistency loss coefficient c3 20
// Optimization
Learning rate η 3e-4
Periodic target network (θ−) update steps δ 1
Optimizer Adam(β1 = 0.9,β2 = 0.999)
Exploration schedule (std) Linear(0.5, 0.05, 25,000 steps)
Planning horizon schedule Linear(1, 5, 25,000 steps)
// ViGMO hyperparameters
Weak random augmentation Υw random-shift: padding p = 4

Strong random augmentation Υs random-overlay:

{
linear interpolation: δ = 0.5

Image dataset: D = Places (Zhou et al., 2017)

Weak and strong augmentation ratio ζ 1.0
Regularization coefficient α 1

For model-free baselines, we compute N -step TD target for value function learning; (rt + rt+1 + · · · + rt+N ) +
γQ(st+N , π(st+N )). The image dimension used for training and evaluation is 84 × 84 × 9: st = {ot, ot−1, ot−2}
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where ot ∈ O84×84×3. We stack the consequent images along the color channel axis and repeat a specific amount of the
same action extracted from the policy or model planning by following prior works.

Table 5. Baseline hyperparameters. Algorithm-specific hyperparameters for model-free baselines across experiments (DMC and
robosuite). Other hyperparameters not described here can be found in Table 3.

Hyperparameter Value
Periodic critic target network (θ−) update steps 1
Clip constant for the stochastic actor 3e-2
Learning rate for the auxiliary task 3e-4 (SGQN)
Attribution mask quantile 0.95 (SGQN)

B. Implications under method
B.1. Data Augmentation

While prior works have shown weak and strong augmentations boost the sample efficiency and generalization performance,
the empirical results are limited to the value-based model-free learning approach. Hence, we propose a novel method for
adapting data augmentations into model-based RL. Random-shift (Yarats et al., 2021a) augmentation applies a fixed amount
of padding to a random direction in top, bottom, right, and left of the image and random-overlay (Hansen & Wang, 2021)
augmentation linearly interpolates between a random image and an original image where the random image is sampled
from an unrelated data to the task (Zhou et al., 2017). Likewise in previous works, while one might feed both weakly and
strongly augmented images to the encoder in principle, we empirically find that randomly dividing the batch in half along
the batch dimension and augmenting two sub-batches with different augmentations can produce a similar performance with
a decreased computing budget.

B.2. Latent Transition Dynamics

As observed in many prior works (Mnih, 2013; He et al., 2020; Hansen et al., 2021), noisy and high-variance target
values might impede the fast convergence of the Q value function. Since the Q value network is often conditioned on the
representation encoded from the observation images directly over the horizon, the representation encoded from the strongly
augmented image may produce a trivial signal for downstream model learning. However, the field has observed that weak
data augmentation often encourages sample-efficient RL in high-dimensional observation space configuration (Yarats et al.,
2021b;a; Hansen et al., 2022). Hence, we choose weak augmentation for generating TD target of value learning instead of
strong data augmentation.

B.3. Regularization

Following the suggested procedure, the world model improves the sample efficiency and generalization through augmen-
tations and predicts consistent outputs regardless of augmentations. However, the encoder might predict inconsistent
representation between training and evaluation images. Although the latent transition model is trained to predict consistent
representations over the horizon, the encoder has no constraint to predict a similar representation whether the training
or evaluation image is given. Hence, we contend the model should generate reliable synthetic samples regardless of the
training or evaluation phase to enable sample-efficient and generalizable model-based RL. To this end, we bring the auxiliary
representation learning task to encoder learning during world model training. By regulating the encoder to preserve similar
features (e.g., the physical body of the agent) and discarding irrelevant information (e.g., background and luminosity)
between the original image and the augmented image, we can obtain consistent representation in both training and evaluation
settings.

C. Discussions
Model-based RL. Our main contribution to this paper is to present a model-based RL method that empirically demonstrates
strong generalization ability without sacrificing sample efficiency. We have compared two state-of-the-art model-based RL
backbone algorithms, TD-MPC2 (Hansen et al., 2023), and DreamerV3 (Hafner et al., 2023), which exhibit strong sample
efficiency over diverse continuous control problems in recent years. We provide reproduced empirical results to validate that
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TD-MPC2 would exhibit better sample efficiency than DreamerV3 in Figure 9. Since we aim to achieve sample-efficient RL
for visual generalization, we choose TD-MPC2 as our backbone model-based RL algorithm, which demonstrates stronger
sample efficiency in continuous control tasks. Those two model-based algorithms train and exploit the latent transition
dynamics model that takes the low-dimensional latent state and action as inputs and outputs the next latent state to solve
continuous control tasks with the high-dimensional image input. DreamerV3 learns the world model by predicting latent
future states, actions, and state-value functions (V functions) and reconstructing the given image by contrastive learning.
In contrast, TD-MPC2 trains the world model by predicting latent future states, actions, and action-value functions (Q
functions) and avoids reconstructing the high-dimensional images. While DreamerV3 plans the optimal action with the
trained world model and actor policy, TD-MPC2 derives the action by planning an optimal action with the model predictive
controller. Since DreamerV3 employs representation learning with the reconstruction objective, adapting our method to
Dreamer with the reconstructive techniques for visual generalization (Bertoin et al., 2022; Wang et al., 2023) would be
exciting future work.

(a) Aggregated comparison re-
sult.

(b) Comparison over tasks in the DeepMind Control suite.

Figure 9. Comparison of sample efficiency between model-based RL methods. TD-MPC2 demonstrates superior sample efficiency
over DreamerV2 in 6 tasks in the DeepMind Control suite benchmark.

D. Supplementary Results
We provide additional results for extensive experiments here. Concerning the main results, we additionally plot the
generalization performance and sample efficiency across the tasks and evaluation types.

D.1. Quantitative Sample Efficiency Comparison

In Section 5.2, we provide numerical comparisons (Table 1) concerning the sample efficiency and generalization performance.
To compare the baselines with ViGMO, we quantitatively compute the sample efficiency, inspired by (Mai et al., 2022). We
first train an oracle agent, which is a popular visual RL model-free method (DrQ-v2, (Yarats et al., 2021a)). We consider a
visual RL agent to successfully solve the task when the agent reaches the score of the oracle agent. We compare the number
of episodes necessary for achieving 25%, 50%, and 75% of the oracle scores. If the agent fails to reach the oracle score in
each percentile, we fill the score as the number of maximum episodes (i.e., 1000 in DMC, 2000 in robosuite). See detailed
scores in Table 6.

D.2. Qualitative Performance Comparison

One can find that PIEG outperforms other baselines at the Door task in the robosuite environment. We conjecture that
PIEG demonstrates a strong generalization performance at the Door task since PIEG exploits the pretrained encoder from
ImageNet. ImageNet is a huge dataset that contains diverse images from everyday lives, e.g. door images. Hence, we
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Table 6. Quantitative comparison for visual generalization. Visual generalization performance comparison over different environments
and tasks. Scores of the backbone architecture, TD-MPC2, are provided to contrast the visual generalization difference of ViGMO. The
numbers below algorithms represent the percentile (e.g., 0.25 is 25%). Red scores stand for a failed situation to achieve the oracle score
(filled with the maximum episode number).

SVEA SGQN SRM PIEG VIGMO (OURS) TD-MPC2
ENV TASK 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

DMC

CARTPOLE SWINGUP 180 490 520 240 330 330 80 400 400 660 1000 1000 100 760 1000 60 110 110
FINGER SPIN 190 220 260 500 560 820 180 230 300 200 1000 1000 40 40 60 60 60 60
WALKER WALK 50 90 370 120 160 1000 50 80 260 50 60 190 30 40 80 20 40 80
WALKER STAND 10 10 10 10 10 10 10 10 10 10 10 10 20 20 20 10 10 10
CHEETAH RUN 160 430 970 1000 1000 1000 210 380 880 480 1000 1000 180 460 600 100 260 1000
REACHER EASY 10 30 30 10 60 180 10 40 40 10 60 60 20 30 30 10 30 30
AVG. 100 211 360 313 353 556 90 190 315 235 521 543 65 225 298 43 85 215

ROBOSUITE
DOOR 2000 2000 2000 2000 2000 2000 2000 2000 2000 580 1020 1640 280 540 720 200 320 420
LIFT 760 1200 1680 2000 2000 2000 160 1000 1440 1560 2000 2000 200 420 1340 180 560 1120
AVG. 1380 1600 1840 2000 2000 2000 1080 1500 1720 1070 1510 1820 240 480 1030 190 440 770

presume that the representation encoded from the pretrained encoder might distinguish the object well while other baselines
should learn the effective representation first. This enables superior sample efficiency and generalization performance for
PIEG.

(a) Evaluation results over environments and tasks.

(b) Sample efficiency over environments and tasks.

Figure 10. Full experimental results over tasks. (Top) Generalization performance and (Right) sample efficiency. Episode returns and
cumulative success rates over tasks are reported in DMC and robosuite, respectively. All evaluation results are averaged over 5 seeds and
sample efficiency results are averaged over 10 episodes during training.
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Figure 11. Generalization performance over evaluation types. 14 types in DMC and 3 types in robosuite for generalization evaluation.
Generalizable RL methods show a monotonic decrease between original and generalization types (e.g., original-easy-hard). All evaluation
results are averaged over 5 seeds and sample efficiency results are averaged over 10 episodes during training.

In Figure 11, we provide the relative performance of baselines between the training environment and evaluation tasks.
While all baselines indicate decreased performance depending on the severity of generalization, TD-MPC2 demonstrates
the steepest decrease among the baselines. These results support the idea that conventional model-based RL suffers from
the distribution shift when the trained model is given unseen input during evaluation. As one can see in Figure 10 and 11,
almost every baseline shows moderate generalization performance in DMC while struggling in the robosuite environment.
We suggest that current algorithms including state-of-the-art methods for visual generalization have demonstrated limited
results to some extent and there is room for further improvements in problem formulation for better generalization.

Figure 12. Generalization performance over evaluation types of ablations. Similar to Figure 11 but baselines are ablated versions
of ViGMO in Section 5.2.2. ViGMO shows a monotonic decrease between original and generalization types (e.g., original-easy-hard)
compared to other options. All evaluation results are averaged over 5 seeds and sample efficiency results are averaged over 10 episodes
during training.

D.3. Ablation Performance Comparison

We provide additional experimental results comparing possible options over environments in Figure 12 from Section 5.2.2.
ViGMO CONV shows impressive performance in moving light and object color tasks, where the image is mainly distracted
with colors. Since ViGMO CONV augments the image with random convolution operation during training, ViGMO CONV
may show relatively strong generalization performance compared to other baselines. Example images comparing the popular
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strong augmentation techniques can be found in Figure 13.

Figure 13. Example images comparing strong augmentations. Illustrations of how the image is augmented in walker walk task. (Left)
Original image, (Center) random-overlay augmentation, (Right) random-conv augmentation.

(a) Visualization of embeddings from TD-MPC2. (b) Visualization of embeddings from ViGMO.

Figure 14. Visualization of embeddings. Star, X, and diamond markers correspond to original task(⋆), easy task(×), and hard task(⋄),
respectively. Arrows indicate sequential transitions from each representation. Trajectory segments are st:t+H .

D.4. Embedding Visualization

Throughout empirical findings, the world model becomes generalizable to unseen observations and avoids forgoing the
superior sample efficiency of model-based RL. The underlying implication is that the world model would exhibit similar
performance when the transition model predicts consistent trajectories regardless of perturbations. Hence, we examine the
motivation that ViGMO would predict consistent representations regardless of perturbations while TD-MPC2 fails. We first
train ViGMO and TD-MPC2 on each task and then roll out the trained models to plan actions. For every time-step t, we
aggregate the horizontal representations from the latent transition model: zt = hθ(st), zk+1 = dθ(st, at)∀k ∈ [t+1, t+H]
where each action is planned by MPC. After, we obtain 2D latent coordinates from the aggregated representations using
U-MAP (McInnes et al., 2018). We choose cheetah run for embedding experiments. We provide full plots for embedding
experiments in Figure 15.
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Figure 15. Full visualization of embedding experiments. Each row stands for a different generalization task and each column stands for
the horizontal time step.

In Figure 6, faded trajectories are previous time-step embeddings from dθ. We illustrate extracted embeddings as (original
task(⋆), easy task(×), and hard task(⋄) from the left-side of each row). Embeddings from TD-MPC2 show inconsistent
representations while ViGMO indicates consistent and aligned representation across generalization tasks. Furthermore,
ViGMO demonstrates accurate predictions of latent transition dynamics models across tasks, supporting the assertion that
learning consistent representation significantly enhances the generalization performance.
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